Polar Representation of Shapley Value: Nonatomic Polynomial Games
Contributions to game theory and management, Tome 6 (2013), pp. 434-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with polar representation formula for the Shapley value, established in (Vasil’ev, 1998). Below, we propose a new, simplified proof of the formula for nonatomic polynomial games. This proof relies on the coincidence of generalized Owen extension and multiplicative Aumann-Shapley expansion for polynomial games belonging to $pNA$ (Vasil’ev, 2009). The coincidence mentioned makes it possible to calculate Aumann-Shapley expansion in a straightforward manner, and to complete new proof of the polar representation formula for nonatomic case by exploiting the generalized Owen integral formula, established in (Aumann and Shapley, 1974).
Keywords: Shapley value, nonatomic polynomial game, generalized Owen extension, polar form, polar representation formula.
@article{CGTM_2013_6_a33,
     author = {Valeri A. Vasil'ev},
     title = {Polar {Representation} of {Shapley} {Value:} {Nonatomic} {Polynomial} {Games}},
     journal = {Contributions to game theory and management},
     pages = {434--446},
     publisher = {mathdoc},
     volume = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/}
}
TY  - JOUR
AU  - Valeri A. Vasil'ev
TI  - Polar Representation of Shapley Value: Nonatomic Polynomial Games
JO  - Contributions to game theory and management
PY  - 2013
SP  - 434
EP  - 446
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/
LA  - en
ID  - CGTM_2013_6_a33
ER  - 
%0 Journal Article
%A Valeri A. Vasil'ev
%T Polar Representation of Shapley Value: Nonatomic Polynomial Games
%J Contributions to game theory and management
%D 2013
%P 434-446
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/
%G en
%F CGTM_2013_6_a33
Valeri A. Vasil'ev. Polar Representation of Shapley Value: Nonatomic Polynomial Games. Contributions to game theory and management, Tome 6 (2013), pp. 434-446. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/

[1] Aliprantis C. D., Border K. C., Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1994 | MR | Zbl

[2] Aumann R. J., Shapley L. S., Values of Nonatomic Games, Princeton University Press, Princeton, NJ, 1974 | MR | Zbl

[3] Frechet M., “Sur les functionelles continues”, Ann. Sci. Ecole Norm. Sup., 37 (1910), 193–234 (in French) | MR

[4] Harsanyi J. A., “A bargaining model for cooperative $n$-person games”, Contributions to the Theory of Games, IV, eds. A. W. Tucker, R. D. Luce, 1959, 325–355 | MR

[5] Hille E., Phillips R. S., Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publishers, Providence, RI, 1957 | MR | Zbl

[6] Neveu J., Mathematical Foundations of the Calculus of Probability, Holden Day, San Francisco, CA, 1965 | MR | Zbl

[7] Owen G., “Multilinear extensions of games”, J. Manag. Sci., 18:5 (1972), 64–79 | DOI | MR | Zbl

[8] Vasil'ev V. A., “On a space of nonadditive set functions”, Optimization, 1975, no. 16(33), 99–120 (in Russian) | MR

[9] Vasil'ev V. A., “The Shapley value for cooperative games of bounded polynomial variation”, Optimization, 1975, no. 17(34), 5–26 (in Russian) | MR

[10] Vasil'ev V. A., “The Shapley functional and polar forms of homogeneous polynomial games”, Siberian Adv. in Math., 8:4 (1998), 109–150 | MR

[11] Vasil'ev V. A., “Polar forms, $p$-values, and the core”, Approximation, Optimisation and Mathematical Economics, ed. M. Lassonde, Physica-Verlag, Heidelberg–New York, 2001, 357–368 | DOI | MR

[12] Vasil'ev V. A., “Cores and generalized NM-solutions for some classes of cooperative games”, Russian Contributions to Game Theory and Equilibrium Theory, eds. T. Driessen, G. van der Laan, V. Vasil'ev, E. Yanovskaya, Springer-Verlag, Berlin–Heidelberg–New York, 2006, 91–149 | DOI

[13] Vasil'ev V. A., “An axiomatization of generalized Owen extension”, Math. Game Th. and Appl., 1:2 (2009), 3–13 (in Russian) | MR

[14] Vasil'ev V. A., Zuev M. G., “Support function of the core of a convex game on a metric compactum”, Optimization, 1988, no. 44(61), 155–160 (in Russian) | MR