Polar Representation of Shapley Value: Nonatomic Polynomial Games
Contributions to game theory and management, Tome 6 (2013), pp. 434-446

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with polar representation formula for the Shapley value, established in (Vasil’ev, 1998). Below, we propose a new, simplified proof of the formula for nonatomic polynomial games. This proof relies on the coincidence of generalized Owen extension and multiplicative Aumann-Shapley expansion for polynomial games belonging to $pNA$ (Vasil’ev, 2009). The coincidence mentioned makes it possible to calculate Aumann-Shapley expansion in a straightforward manner, and to complete new proof of the polar representation formula for nonatomic case by exploiting the generalized Owen integral formula, established in (Aumann and Shapley, 1974).
Keywords: Shapley value, nonatomic polynomial game, generalized Owen extension, polar form, polar representation formula.
@article{CGTM_2013_6_a33,
     author = {Valeri A. Vasil'ev},
     title = {Polar {Representation} of {Shapley} {Value:} {Nonatomic} {Polynomial} {Games}},
     journal = {Contributions to game theory and management},
     pages = {434--446},
     publisher = {mathdoc},
     volume = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/}
}
TY  - JOUR
AU  - Valeri A. Vasil'ev
TI  - Polar Representation of Shapley Value: Nonatomic Polynomial Games
JO  - Contributions to game theory and management
PY  - 2013
SP  - 434
EP  - 446
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/
LA  - en
ID  - CGTM_2013_6_a33
ER  - 
%0 Journal Article
%A Valeri A. Vasil'ev
%T Polar Representation of Shapley Value: Nonatomic Polynomial Games
%J Contributions to game theory and management
%D 2013
%P 434-446
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/
%G en
%F CGTM_2013_6_a33
Valeri A. Vasil'ev. Polar Representation of Shapley Value: Nonatomic Polynomial Games. Contributions to game theory and management, Tome 6 (2013), pp. 434-446. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a33/