Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2013_6_a27, author = {Yaroslavna B. Pankratova and Svetlana I. Tarashnina}, title = {Two {Approaches} for {Solving} a {Group} {Pursuit} {Game}}, journal = {Contributions to game theory and management}, pages = {362--376}, publisher = {mathdoc}, volume = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a27/} }
TY - JOUR AU - Yaroslavna B. Pankratova AU - Svetlana I. Tarashnina TI - Two Approaches for Solving a Group Pursuit Game JO - Contributions to game theory and management PY - 2013 SP - 362 EP - 376 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a27/ LA - en ID - CGTM_2013_6_a27 ER -
Yaroslavna B. Pankratova; Svetlana I. Tarashnina. Two Approaches for Solving a Group Pursuit Game. Contributions to game theory and management, Tome 6 (2013), pp. 362-376. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a27/
[1] Bondareva O., “Some applications of methods of linear programming to coorerative games theory”, Problems of Cybernatics, 10 (1963), 119–140 (in Russian) | MR
[2] Isaaks R., Differential Games: a mathematical theory with applications to warfare and pursuit, Control and Optimization, Wiley, New York, 1965 | MR
[3] Pankratova Y., “Some cases of cooperation in differential pursuit games”, Collected papers presented on the International Conference Game Theory and Management, Contributions to Game Theory and Management, eds. L. A. Petrosjan, N. A. Zenkevich, Graduated School of Management, SPbGU, St. Petersburg, 2007, 361–380
[4] Pankratova Ya. B., “A Solution of a cooperative differential group pursuit game”, Diskretnyi Analiz i Issledovanie Operatsii, 17:2 (2010), 57–78 (in Russian) | MR | Zbl
[5] Pankratova Ya., Tarashnina S., “How many people can be controlled in a group pursuit game”, Theory and Decision, 56 (2004), 165–181 | DOI | MR | Zbl
[6] Petrosjan L. A., Shirjaev V. D., “Simultaneous pursuit of several evaders by one pursuer”, Vestnik Leningrad Univ. Math., 13 (1981)
[7] Petrosjan L., Tomskii G., Geometry of Simple Pursuit, Nauka, Novosibirsk, 1983 (in Russian)
[8] Scarf H. E., “The core of an $n$-person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl
[9] Shapley L., “On balanced sets and cores”, Naval Research Logistic Quarterly, 14 (1967), 453–460 | DOI
[10] Tarashnina S., “Nash equilibria in a differential pursuit game with one pursuer and $m$ evaders”, Game Theory and Applications, III, Nova Science Publ., N. Y., 1998, 115–123 | MR
[11] Tarashnina S., “Time-consistent solution of a cooperative group pursuit game”, International Game Theory Review, 4 (2002), 301–317 | DOI | MR | Zbl