Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2013_6_a26, author = {O. Palanc{\i} and S. Z. Alparslan G\"ok and G.-W. Weber}, title = {Forest {Situations} and {Cost} {Monotonic} {Solutions}}, journal = {Contributions to game theory and management}, pages = {351--361}, publisher = {mathdoc}, volume = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a26/} }
TY - JOUR AU - O. Palancı AU - S. Z. Alparslan Gök AU - G.-W. Weber TI - Forest Situations and Cost Monotonic Solutions JO - Contributions to game theory and management PY - 2013 SP - 351 EP - 361 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a26/ LA - en ID - CGTM_2013_6_a26 ER -
O. Palancı; S. Z. Alparslan Gök; G.-W. Weber. Forest Situations and Cost Monotonic Solutions. Contributions to game theory and management, Tome 6 (2013), pp. 351-361. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a26/
[1] Bird C. G., “On cost allocation for a spanning tree: a game theoretic approach”, Networks, 6 (1976), 335–350 | DOI | MR | Zbl
[2] Branzei R., Dimitrov D., Tijs S. H., Models in Cooperative Game Theory: Crisp, Fuzzy and Multi-Choice Games, Lecture Notes in Economics and Mathematical Systems, 556, Springer-Verlag, Berlin, 2008 | MR
[3] Diestel R., Graph Theory, Springer-Verlag, 2000 | MR
[4] Gillies D. B., Some theorems on $n$-person games, Ph. D. Dissertation, Princeton University Press, Princeton, New Yersey, 1953 | MR
[5] Kent K. J., Skorin-Kapov D., Distance monotonic stable cost allo-cation schemes for the minimum cost spanning tree network, Discussion Paper, State University of New York at Stony Brook, 1997
[6] Moretti S., Norde H., Do K. H. P., Tijs S., “Connection problems in mountains and monotonic allocation schemes”, Sociedad de Estadistica e Investigación Operativa, TOP, 10:1 (2002), 83–99 | MR | Zbl
[7] Norde H., Moretti S., Tijs S., “Minimum cost spanning tree games and population monotonic allocation schemes”, CentER DP series, Tilburg University, 2001 (to appear)
[8] Shapley L. S., “A value for $n$-person games”, Annals of Mathematics Studies, 28, 1953, 307–317 | MR | Zbl
[9] Tijs S., Introduction to Game Theory, Texts and Readings in Mathematics, 23, Hindustan Book Agency, New Delhi, India, 2003 | MR | Zbl
[10] Roth A., The Shapley Value, Essays in Honor of Lloyd S. Shapley, Cambridge University Press, 1988 | MR
[11] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14:2 (1985), 65–72 | DOI | MR | Zbl