Forest Situations and Cost Monotonic Solutions
Contributions to game theory and management, Tome 6 (2013), pp. 351-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize the well-known mountain situations by introducing multiple sources called the forest situations. We deal with the cost sharing problem by introducing the cooperative cost game. We show that the Bird allocation is a special core element of the related cost game corresponding to the forest situation. Further, we give solutions for the cost game corresponding to the forest situation. Finally, we show that these solutions satisfy the cost monotonicity property.
Keywords: forest situations, bird allocation, shapley value, cost monotonicity.
@article{CGTM_2013_6_a26,
     author = {O. Palanc{\i} and S. Z. Alparslan G\"ok and G.-W. Weber},
     title = {Forest {Situations} and {Cost} {Monotonic} {Solutions}},
     journal = {Contributions to game theory and management},
     pages = {351--361},
     publisher = {mathdoc},
     volume = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a26/}
}
TY  - JOUR
AU  - O. Palancı
AU  - S. Z. Alparslan Gök
AU  - G.-W. Weber
TI  - Forest Situations and Cost Monotonic Solutions
JO  - Contributions to game theory and management
PY  - 2013
SP  - 351
EP  - 361
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a26/
LA  - en
ID  - CGTM_2013_6_a26
ER  - 
%0 Journal Article
%A O. Palancı
%A S. Z. Alparslan Gök
%A G.-W. Weber
%T Forest Situations and Cost Monotonic Solutions
%J Contributions to game theory and management
%D 2013
%P 351-361
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2013_6_a26/
%G en
%F CGTM_2013_6_a26
O. Palancı; S. Z. Alparslan Gök; G.-W. Weber. Forest Situations and Cost Monotonic Solutions. Contributions to game theory and management, Tome 6 (2013), pp. 351-361. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a26/

[1] Bird C. G., “On cost allocation for a spanning tree: a game theoretic approach”, Networks, 6 (1976), 335–350 | DOI | MR | Zbl

[2] Branzei R., Dimitrov D., Tijs S. H., Models in Cooperative Game Theory: Crisp, Fuzzy and Multi-Choice Games, Lecture Notes in Economics and Mathematical Systems, 556, Springer-Verlag, Berlin, 2008 | MR

[3] Diestel R., Graph Theory, Springer-Verlag, 2000 | MR

[4] Gillies D. B., Some theorems on $n$-person games, Ph. D. Dissertation, Princeton University Press, Princeton, New Yersey, 1953 | MR

[5] Kent K. J., Skorin-Kapov D., Distance monotonic stable cost allo-cation schemes for the minimum cost spanning tree network, Discussion Paper, State University of New York at Stony Brook, 1997

[6] Moretti S., Norde H., Do K. H. P., Tijs S., “Connection problems in mountains and monotonic allocation schemes”, Sociedad de Estadistica e Investigación Operativa, TOP, 10:1 (2002), 83–99 | MR | Zbl

[7] Norde H., Moretti S., Tijs S., “Minimum cost spanning tree games and population monotonic allocation schemes”, CentER DP series, Tilburg University, 2001 (to appear)

[8] Shapley L. S., “A value for $n$-person games”, Annals of Mathematics Studies, 28, 1953, 307–317 | MR | Zbl

[9] Tijs S., Introduction to Game Theory, Texts and Readings in Mathematics, 23, Hindustan Book Agency, New Delhi, India, 2003 | MR | Zbl

[10] Roth A., The Shapley Value, Essays in Honor of Lloyd S. Shapley, Cambridge University Press, 1988 | MR

[11] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14:2 (1985), 65–72 | DOI | MR | Zbl