Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2013_6_a16, author = {Nadezhda V. Kozlovskaia}, title = {Coalitional {Solution} in a {Game} {Theoretic} {Model} of {Territorial} {Environmental} {Production}}, journal = {Contributions to game theory and management}, pages = {231--247}, publisher = {mathdoc}, volume = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a16/} }
TY - JOUR AU - Nadezhda V. Kozlovskaia TI - Coalitional Solution in a Game Theoretic Model of Territorial Environmental Production JO - Contributions to game theory and management PY - 2013 SP - 231 EP - 247 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a16/ LA - en ID - CGTM_2013_6_a16 ER -
Nadezhda V. Kozlovskaia. Coalitional Solution in a Game Theoretic Model of Territorial Environmental Production. Contributions to game theory and management, Tome 6 (2013), pp. 231-247. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a16/
[1] Albizur M., Zarzuelo J., “On coalitional semivalues”, Games and Economic Behaviour, 2 (2004), 221–243 | DOI | MR | Zbl
[2] Bloch F., “Sequantal formation of coalitions with fixed payoff division”, Games and Economic Behaviour, 14 (1966), 90–123 | DOI | MR
[3] Demsetz H., “Toward a theory of property rights”, The American Economic Review, 57:2 (1967), 347–359
[4] Dockner E. J., Jørgensen S., Van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000, 485 pp. | MR | Zbl
[5] Kozlovskaya N., Petrosyan L., Zenkevich N., “Coalitional Solution of a Game-Theoretic Emission Reduction Model”, International Game Theory Review, 12:3 (2010), 275–286 | DOI | MR | Zbl
[6] Nash J. F., “Equilibrium points in $n$-person games”, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | MR | Zbl
[7] Owen G., “Values of games with a priory unions”, Mathematical Economy and Game Theory, eds. R. Henn, O. Moeschlin, Berlin, 1997, 78–88
[8] Petrosyan L., Mamkina S., “Dynamic games with coalitional structures”, Intern. Game Theory Review, 8:2 (2006), 295–307 | DOI | MR
[9] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. of Economic Dynamics and Control, 27 (2003), 381–398 | DOI | MR
[10] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games, II, Princeton University Press, Princeton, 1953, 57–69 | MR
[11] Zenkevich N., Kozlovskaya N., “Stable Cooperation under Environmental Constrains”, International Game Theory Review, 12:4 (2010), 453–470 | DOI | MR | Zbl