Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2013_6_a13, author = {Dongshuang Hou and Theo Driessen and Antoni Meseguer-Artola and Bolg\'arka Mosoni}, title = {A {New} {Characterization} of the {Pre-Kernel} for {TU} {Games} {Through} its {Indirect} {Function} and its {Application} to {Determine} the {Nucleolus} for {Three} {Subclasses} of {TU} {Games}}, journal = {Contributions to game theory and management}, pages = {200--210}, publisher = {mathdoc}, volume = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a13/} }
TY - JOUR AU - Dongshuang Hou AU - Theo Driessen AU - Antoni Meseguer-Artola AU - Bolgárka Mosoni TI - A New Characterization of the Pre-Kernel for TU Games Through its Indirect Function and its Application to Determine the Nucleolus for Three Subclasses of TU Games JO - Contributions to game theory and management PY - 2013 SP - 200 EP - 210 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a13/ LA - en ID - CGTM_2013_6_a13 ER -
%0 Journal Article %A Dongshuang Hou %A Theo Driessen %A Antoni Meseguer-Artola %A Bolgárka Mosoni %T A New Characterization of the Pre-Kernel for TU Games Through its Indirect Function and its Application to Determine the Nucleolus for Three Subclasses of TU Games %J Contributions to game theory and management %D 2013 %P 200-210 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2013_6_a13/ %G en %F CGTM_2013_6_a13
Dongshuang Hou; Theo Driessen; Antoni Meseguer-Artola; Bolgárka Mosoni. A New Characterization of the Pre-Kernel for TU Games Through its Indirect Function and its Application to Determine the Nucleolus for Three Subclasses of TU Games. Contributions to game theory and management, Tome 6 (2013), pp. 200-210. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a13/
[1] Arin J., Feltkamp V., “The nucleolus and kernel of veto-rich transferable utility games”, Int. J. Game Theory, 26 (1997), 61–73 | DOI | MR | Zbl
[2] Branzei R., Dimitrov D., Tijs S. H., Models in Cooperative Game Theory, 2nd edition, Springer-Verlag, Berlin–Heidelberg, 2008 | MR | Zbl
[3] Driessen T. S. H., Cooperative Games, Solutions, and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988, 222 pp. | Zbl
[4] Driessen T. S. H., “The greedy bankruptcy game: an alternative game theoretic analysis of a bankruptcy problem”, Game Theory and Applications, IV, eds. L. A. Petrosjan, V. V. Mazalov, Nova Science Publ., 45–61 | MR
[5] Driessen T. S. H., Khmelnitskaya A., Sales J., “$1$-Concave basis for TU games and the library game”, Top, 2010 | DOI | MR
[6] Driessen T. S. H., Fragnelli V., Khmelnitskaya A., Katsev Y., “On 1-convexity and nuleolus of co-insurance games”, Mathematics and Economics, 48 (2011), 217–225 | DOI | MR | Zbl
[7] Driessen T. S. H., Hou D., “A note on the nucleolus for $2$-convex $n$-person TU games”, Int. J. Game Theory, 39, special issue in honor of Michael Maschler (2010), 185–189 | DOI | MR | Zbl
[8] Maschler M., Peleg B., L. S. Shapley, “Geometric properties of the kernel, nucleolus, and related solution concepts”, Mathematics of Operations Research, 4 (1979), 303–338 | DOI | MR | Zbl
[9] Martinez-Legaz J.-E., “Dual representation of cooperative games based on Fenchel–Moreau conjugation”, Optimization, 36 (1996), 291–319 | DOI | MR | Zbl
[10] Meseguer-Artola A., Using the indirect function to characterize the kernel of a TU-game, Working Paper, Departament d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona, Bellaterra, Spain, 1997
[11] Muto S., Nakayama M., Potters J., Tijs S. H., “On big boss games”, Economic Studies Quarterly, 39 (1988), 303–321
[12] Potters J., Poos R., Muto S., Tijs S. H., “Clan games”, Games and Economic Behavior, 1 (1989), 275–293 | DOI | MR | Zbl
[13] Quant M., Borm P., Reijnierse H., van Velzen B., “The core cover in relation to the nucleolus and the Weber set”, Int. J. Game Theory, 33, 491–503 | DOI | MR | Zbl