Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2013_6_a12, author = {Elena Gubar and Ekaterina Zhitkova}, title = {Decision {Making} {Procedure} in {Optimal} {Control} {Problem} for the {SIR} {Model}}, journal = {Contributions to game theory and management}, pages = {189--199}, publisher = {mathdoc}, volume = {6}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2013_6_a12/} }
TY - JOUR AU - Elena Gubar AU - Ekaterina Zhitkova TI - Decision Making Procedure in Optimal Control Problem for the SIR Model JO - Contributions to game theory and management PY - 2013 SP - 189 EP - 199 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2013_6_a12/ LA - en ID - CGTM_2013_6_a12 ER -
Elena Gubar; Ekaterina Zhitkova. Decision Making Procedure in Optimal Control Problem for the SIR Model. Contributions to game theory and management, Tome 6 (2013), pp. 189-199. http://geodesic.mathdoc.fr/item/CGTM_2013_6_a12/
[1] Behncke H., “Optimal control of deterministic epidemics”, Optim. Control Appl. Meth., 21 (2000), 269–285 | DOI | MR | Zbl
[2] Bonhoeffer S., May R. M., Shaw G. M., Nowak M. A., “Virus dynamics and drug therapy”, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971–6976 | DOI
[3] Conn M. (ed.), Handbook of Models for Human Aging, Elsevier Academic Press, London, 2006
[4] Fu F., Rosenbloom D. I., Wang L., Nowak M. A., “Imitation dynamics of vaccination behaviour on social networks”, Proceedings of the Royal Society. Proc. R. Soc. B, 278 (2010), 42–49
[5] Gjorgjieva J., Smith K., Chowell G., Sanchez F., Snyder J., Castillo-Chavez C., “The role of vaccination in the control of SARS”, Mathematical Biosciences and Engineering, 2:4 (2005), 753–769 | DOI | MR | Zbl
[6] Gubar E., Zhitkova E., Fotina L., Nikitina I., “Two Models of the Influenza Epidemic”, Contributions to game theory and management, 4, 2011, 107–120
[7] Karpuhin G. I. (ed.), Gripp, Medicina, Leningrad, 1986
[8] Khatri S., Rael R., Hyman J., The Role of Network Topology on the Initial Growth Rate of Influenza Epidemic, Technical report BU-1643-M, 2003
[9] Kermack W. O., Mc KendrickA. G., “A contribution to themathematical theory of epidemics”, Proceedings of the Royal Society. Ser. A, 115:771 (1927), 700–721 | DOI | Zbl
[10] Khouzani M. H. R., Sarkar S., Altman E., “Optimal Control of Epidemic Evolution”, Proceedings of IEEE INFOCOM, 2011
[11] Khouzani M. H. R., Sarkar S., Altman E., “Dispatch then stop: Optimal dissemination of security patches in mobile wireless networks”, Proc. of 48th IEEE Conference on Decisions and Control (CDC), 2010, 2354–2359
[12] Mehlhorn H. et al. (eds.), Encyclopedia of Parasitology, Third Edition, Springer-Verlag, Berlin–Heidelberg–New York, 2008
[13] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V. Mishchenko E. F., The Mathematical Theory of Optimal Processes, Interscience, 1962 | MR
[14] Sandholm W. H., Dokumaci E., Franchetti F., Dynamo: Diagrams for Evolutionary Game Dynamics, version 0.2.5, , 2010 http://www.ssc.wisc.edu/w̃hs/dynamo
[15] Kolesin I. D., Zhitkova E. M., Matematicheskie modeli epidemiy, SPbU, 2004