On Voluntariness of Nash Equilibrium
Contributions to game theory and management, Tome 5 (2012), pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with pure strategy equilibria of bi-matrix games. It is argued that the set of Nash equilibria can contain voluntary as well as involuntary outcomes. Only the former are indicative of consistent expectations. In the context of repeated play with incomplete information, simulations show that involuntary equilibria tend to occur more frequently than voluntary equilibria. Consequences in econometric practice and philosophical implications are briefly hinted at.
Keywords: matrix games, expectations, pure equilibria, learning, incomplete information.
@article{CGTM_2012_5_a7,
     author = {Paolo Caravani},
     title = {On {Voluntariness} of {Nash} {Equilibrium}},
     journal = {Contributions to game theory and management},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2012_5_a7/}
}
TY  - JOUR
AU  - Paolo Caravani
TI  - On Voluntariness of Nash Equilibrium
JO  - Contributions to game theory and management
PY  - 2012
SP  - 73
EP  - 82
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2012_5_a7/
LA  - en
ID  - CGTM_2012_5_a7
ER  - 
%0 Journal Article
%A Paolo Caravani
%T On Voluntariness of Nash Equilibrium
%J Contributions to game theory and management
%D 2012
%P 73-82
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2012_5_a7/
%G en
%F CGTM_2012_5_a7
Paolo Caravani. On Voluntariness of Nash Equilibrium. Contributions to game theory and management, Tome 5 (2012), pp. 73-82. http://geodesic.mathdoc.fr/item/CGTM_2012_5_a7/

[1] Bernheim D., “Rationalizable Strategic Behavior”, Econometrica, 52 (1984), 1007–1028 | DOI | MR | Zbl

[2] Dennet D. C., Elbow Room, Oxford Univ. Press, UK, 1984

[3] Dennet D. C., The Intentional Stance, MIT Press, Cambridge, Ma, US, 1989

[4] Gettier E., Is Justified True Belief Knowledge?, Analysis, 23 (1963), 121–123 | DOI

[5] Hargreaves Heap S. P., Varoufakis Y., Game Theory: a critical introduction, Routledge, New York, 1995

[6] Monderer D., Shapley L. S., “Potential Games”, Games and Economic Behaviour, 14 (1996), 0044, 124–143 | DOI | MR | Zbl

[7] Moulin H., Game Theory for the Social Science, New York Univ. Press, Washington Sq. New York, 1986 | MR

[8] Pearce D., “Rationalizable Strategic Behavior and the Problem of Perfection”, Econometrica, 52 (1984), 1029–1050 | DOI | MR | Zbl

[9] Sastry P., Phansalkar V., Thathachar M. A. L., “Decentralized Learning of Nash Equilibria in Multi-person Stochastic Games with Incomplete Information”, IEEE Trans. Sys., Man, Cybern., 24:5 (1994), 769–777 | DOI | MR

[10] Thathachar M. A. L., Sastry P. S., Networks of Learning Automata, Kluwer Academic Publ., Norwell, MA, USA, 2004