Waiting Time Costs in a Bilevel Location-Allocation Problem
Contributions to game theory and management, Tome 5 (2012), pp. 178-188

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a two-stage optimization model to solve a location-allocation problem: finding the optimal location of new facilitites and the optimal partition of the consumers. The social planner minimizes the social costs, i.e. the fixed costs plus the waiting time costs, taking into account that the citizens are partitioned in the region according to minimizing the capacity costs plus the distribution costs in the service regions. Theoretical and computational aspects of the location-allocation problem are discussed for the linear city and illustrated with examples.
Keywords: bilevel optimization, continuous facility location.
@article{CGTM_2012_5_a17,
     author = {Lina Mallozzi and Egidio D'Amato and Elia Daniele and Giovanni Petrone},
     title = {Waiting {Time} {Costs} in a {Bilevel} {Location-Allocation} {Problem}},
     journal = {Contributions to game theory and management},
     pages = {178--188},
     publisher = {mathdoc},
     volume = {5},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/}
}
TY  - JOUR
AU  - Lina Mallozzi
AU  - Egidio D'Amato
AU  - Elia Daniele
AU  - Giovanni Petrone
TI  - Waiting Time Costs in a Bilevel Location-Allocation Problem
JO  - Contributions to game theory and management
PY  - 2012
SP  - 178
EP  - 188
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/
LA  - en
ID  - CGTM_2012_5_a17
ER  - 
%0 Journal Article
%A Lina Mallozzi
%A Egidio D'Amato
%A Elia Daniele
%A Giovanni Petrone
%T Waiting Time Costs in a Bilevel Location-Allocation Problem
%J Contributions to game theory and management
%D 2012
%P 178-188
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/
%G en
%F CGTM_2012_5_a17
Lina Mallozzi; Egidio D'Amato; Elia Daniele; Giovanni Petrone. Waiting Time Costs in a Bilevel Location-Allocation Problem. Contributions to game theory and management, Tome 5 (2012), pp. 178-188. http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/