Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2012_5_a17, author = {Lina Mallozzi and Egidio D'Amato and Elia Daniele and Giovanni Petrone}, title = {Waiting {Time} {Costs} in a {Bilevel} {Location-Allocation} {Problem}}, journal = {Contributions to game theory and management}, pages = {178--188}, publisher = {mathdoc}, volume = {5}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/} }
TY - JOUR AU - Lina Mallozzi AU - Egidio D'Amato AU - Elia Daniele AU - Giovanni Petrone TI - Waiting Time Costs in a Bilevel Location-Allocation Problem JO - Contributions to game theory and management PY - 2012 SP - 178 EP - 188 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/ LA - en ID - CGTM_2012_5_a17 ER -
%0 Journal Article %A Lina Mallozzi %A Egidio D'Amato %A Elia Daniele %A Giovanni Petrone %T Waiting Time Costs in a Bilevel Location-Allocation Problem %J Contributions to game theory and management %D 2012 %P 178-188 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/ %G en %F CGTM_2012_5_a17
Lina Mallozzi; Egidio D'Amato; Elia Daniele; Giovanni Petrone. Waiting Time Costs in a Bilevel Location-Allocation Problem. Contributions to game theory and management, Tome 5 (2012), pp. 178-188. http://geodesic.mathdoc.fr/item/CGTM_2012_5_a17/
[1] Aumann R. J., Hart S., Handbook of Game Theory with Economic Applications, Handbooks in Economics, 11, North-Holland Publishing Co., Amsterdam, 1992 | MR
[2] Başar T., Olsder G. J., Dynamic noncooperative game theory, Classics in Applied Mathematics, 23, Reprint of the second (1995) edition, SIAM, Philadelphia, PA, 1999 | MR | Zbl
[3] Border K. C., Fixed point theorems with applications to economics and game theory, Cambridge University Press, New York, 1989 | MR | Zbl
[4] Buttazzo G., Santambrogio F., “A model for the optimal planning of an urban area”, SIAM J. Math. Anal., 37:2 (2005), 514–530 | DOI | MR | Zbl
[5] Crippa G., Chloè C., Pratelli A., “Optimum and equilibrium in a transport problem with queue penalization effect”, Adv. Calc. Var., 2:3 (2009), 207–246 | DOI | MR | Zbl
[6] D'Amato E., Daniele E., Mallozzi L., Petrone G., “Equilibrium strategies via GA to Stackelberg games under multiple follower's best reply”, International Journal of Intelligent Systems, 27:2 (2012), 74–85 | DOI | MR
[7] D'Amato E., Daniele E., Mallozzi L., Petrone G., Tancredi S., “A hierarchical multi-modal hybrid Stackelberg–Nash GA for a leader with multiple followers game”, Dynamics of Information Systems: Mathematical Foundations, Springer Proceedings in Mathematics, eds. A. Sorokin, P. Pardalos, Springer, 2011
[8] Drezner Z., Facility Location: a Survey of Applications and Methods, Springer-Verlag, New York, 1995 | MR
[9] Hotelling H., “Stability in Competition”, Economic Journal, 39 (1929), 41–57 | DOI
[10] Love R. F., Morris J. G., Wesolowsky G. O., Facility Location: Models and Methods, North Holland, New York, 1988 | MR | Zbl
[11] Mazalov V., Sakaguchi M., “Location game on the plane”, International Game Theory Review, 5:1 (2003), 13–25 | DOI | MR | Zbl
[12] Murat A., Verter V., Laporte G., “A continuous analysis framework for the solution of location-allocation problems with dense demand”, Computer Operations Research, 37:1 (2009), 123–136 | DOI | MR
[13] Nickel S., Puerto J., Location Theory — a unified approach, Springer, Berlin, 2005