Socially Acceptable Values for Cooperative TU Games
Contributions to game theory and management, Tome 4 (2011), pp. 117-131

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the solution theory for cooperative transferable utility games, a value is called socially acceptable with reference to a certain basis of games if, for each relevant game, the payoff to any productive player covers the payoff to any non-productive player. Firstly, it is shown that two properties called desirability and monotonicity are sufficient to guarantee social acceptability of type $I$. Secondly, the main goal is to investigate and characterize the subclass of efficient, linear, and symmetric values that are socially acceptable for any of three types (with clear affinities to simple unanimity games).
Keywords: cooperative game, unanimity game, socially acceptable value, Shapley value, solidarity value, egalitarian value.
@article{CGTM_2011_4_a9,
     author = {Theo Driessen and Tadeusz Radzik},
     title = {Socially {Acceptable} {Values} for {Cooperative} {TU} {Games}},
     journal = {Contributions to game theory and management},
     pages = {117--131},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a9/}
}
TY  - JOUR
AU  - Theo Driessen
AU  - Tadeusz Radzik
TI  - Socially Acceptable Values for Cooperative TU Games
JO  - Contributions to game theory and management
PY  - 2011
SP  - 117
EP  - 131
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a9/
LA  - en
ID  - CGTM_2011_4_a9
ER  - 
%0 Journal Article
%A Theo Driessen
%A Tadeusz Radzik
%T Socially Acceptable Values for Cooperative TU Games
%J Contributions to game theory and management
%D 2011
%P 117-131
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a9/
%G en
%F CGTM_2011_4_a9
Theo Driessen; Tadeusz Radzik. Socially Acceptable Values for Cooperative TU Games. Contributions to game theory and management, Tome 4 (2011), pp. 117-131. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a9/