Mathematical Model of Diffusion in Social Networks
Contributions to game theory and management, Tome 4 (2011), pp. 63-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Network of interacting agents whose actions are influenced by the actions of their neighbors according to the simple diffusion rule is considered. The paper examines some special types of the diffusion function for which the conditions of the network equilibrium are derived. Network equilibrium supposes that the network dynamics is in the stationary state, i.e. relative density of active agents is not changed. The numerical experiment for social network “vkontakte.ru” was made. Some statistical hypotheses about the type of connectivity distribution were checked.
Keywords: social networks, diffusion function, diffusion mechanism.
@article{CGTM_2011_4_a5,
     author = {Olga Bogdanova and Elena Parilina},
     title = {Mathematical {Model} of {Diffusion} in {Social} {Networks}},
     journal = {Contributions to game theory and management},
     pages = {63--70},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a5/}
}
TY  - JOUR
AU  - Olga Bogdanova
AU  - Elena Parilina
TI  - Mathematical Model of Diffusion in Social Networks
JO  - Contributions to game theory and management
PY  - 2011
SP  - 63
EP  - 70
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a5/
LA  - en
ID  - CGTM_2011_4_a5
ER  - 
%0 Journal Article
%A Olga Bogdanova
%A Elena Parilina
%T Mathematical Model of Diffusion in Social Networks
%J Contributions to game theory and management
%D 2011
%P 63-70
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a5/
%G en
%F CGTM_2011_4_a5
Olga Bogdanova; Elena Parilina. Mathematical Model of Diffusion in Social Networks. Contributions to game theory and management, Tome 4 (2011), pp. 63-70. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a5/

[1] Gubanov D. A., Novikov D. A., Chkhartishvili A. G., “Models of influence in social networks”, Large-scale Syst. Manag., 27 (2009), 205–281 (in Russian)

[2] Benaim M., Weibull J., “Deterministic approximation of stochastic evolution in games”, Econometrica, 71 (2003), 873–903 | DOI | MR | Zbl

[3] Dodds P. S., Watts D. J., “Universal behavior in a generalized model of contagion”, Phys. Rev. Lett., 92 (2004), 2187011–2187014 | DOI

[4] López-Pintado D., “Diffusion in complex social networks”, Gam. and Econ. Beh., 62 (2008), 573–590 | DOI | MR

[5] Jackson M., Social and Economic Networks, Princeton University Press, Princeton, NJ, 2008 | MR | Zbl

[6] Pastor-Sattorás R., Vespignani A., “Epidemic spreading in scale-free networks”, Phys. Rev. Lett., 86 (2001), 3200–3203 | DOI