About Some Non-Stationary Problems of Group Pursuit with the Simple Matrix
Contributions to game theory and management, Tome 4 (2011), pp. 47-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two linear non-stationary problems of evasion of one evader from group of pursuers provided that players possess equal dynamic possibilities and the evader does not leave limits of some set. It is proved that if the number of pursuers is less than dimension of space the evader evades from a meeting on an interval $[t_0,+\infty)$.
Keywords: differential pursuit-evasion games.
@article{CGTM_2011_4_a4,
     author = {Alexander Bannikov and Nikolay Petrov},
     title = {About {Some} {Non-Stationary} {Problems} of {Group} {Pursuit} with the {Simple} {Matrix}},
     journal = {Contributions to game theory and management},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a4/}
}
TY  - JOUR
AU  - Alexander Bannikov
AU  - Nikolay Petrov
TI  - About Some Non-Stationary Problems of Group Pursuit with the Simple Matrix
JO  - Contributions to game theory and management
PY  - 2011
SP  - 47
EP  - 62
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a4/
LA  - en
ID  - CGTM_2011_4_a4
ER  - 
%0 Journal Article
%A Alexander Bannikov
%A Nikolay Petrov
%T About Some Non-Stationary Problems of Group Pursuit with the Simple Matrix
%J Contributions to game theory and management
%D 2011
%P 47-62
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a4/
%G en
%F CGTM_2011_4_a4
Alexander Bannikov; Nikolay Petrov. About Some Non-Stationary Problems of Group Pursuit with the Simple Matrix. Contributions to game theory and management, Tome 4 (2011), pp. 47-62. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a4/