Efficient CS-Values Based on Consensus and Shapley Values
Contributions to game theory and management, Tome 4 (2011), pp. 502-513.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two efficient values for transferable utility games with coalition structure are introduced and axiomatized by means of modified versions of null player property and four standard axioms (efficiency, additivity, external symmetry and internal symmetry). The first value uses the consensus value in game between coalitions and the Shapley value in games within coalitions. The second one uses the consensus and Shapley values in inverse order.
Keywords: coalition structure, coalition value, consensus value, Shapley value, axiomatization.
@article{CGTM_2011_4_a37,
     author = {Alexandra B. Zinchenko and Polina P. Provotorova and George V. Mironenko},
     title = {Efficient {CS-Values} {Based} on {Consensus} and {Shapley} {Values}},
     journal = {Contributions to game theory and management},
     pages = {502--513},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a37/}
}
TY  - JOUR
AU  - Alexandra B. Zinchenko
AU  - Polina P. Provotorova
AU  - George V. Mironenko
TI  - Efficient CS-Values Based on Consensus and Shapley Values
JO  - Contributions to game theory and management
PY  - 2011
SP  - 502
EP  - 513
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a37/
LA  - en
ID  - CGTM_2011_4_a37
ER  - 
%0 Journal Article
%A Alexandra B. Zinchenko
%A Polina P. Provotorova
%A George V. Mironenko
%T Efficient CS-Values Based on Consensus and Shapley Values
%J Contributions to game theory and management
%D 2011
%P 502-513
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a37/
%G en
%F CGTM_2011_4_a37
Alexandra B. Zinchenko; Polina P. Provotorova; George V. Mironenko. Efficient CS-Values Based on Consensus and Shapley Values. Contributions to game theory and management, Tome 4 (2011), pp. 502-513. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a37/

[1] Calvo E., Gutierrez P. E., “Solidarity in games with a coalition structure”, Discussion Papers in Economic Behaviour, 8 (2010), 1–22

[2] Gomez-Rua M., Vidal-Puga J., The axiomatic approach to three values in games with coalition structure, MPRA paper, No 8904, University of Munich Library, Germany, 2008, 30 pp.

[3] Hernandez-Lamoneda L., Juarez R., Sanchez-Sanchez F., “Solutions without dummy axiom for TU cooperative games”, Economics Bulletin, 3:1 (2008), 1–9

[4] Ju Y., Born P., Rays P., “The consensus value: a new solution concept for cooperative games”, Social Choice and Welfare, 28:4 (2006), 85–703

[5] Kamijo Y., A collective value: a new interpretation of a value and a coalition structure, 21COE-GLOPE Working Paper Series, No 27, Waseda University, Japan, 2007, 23 pp.

[6] Kamijo Y., “A two-step Shapley value for cooperative games with a coalition structures”, International Game Theory Review, 11:2 (2009), 207–214 | DOI | Zbl

[7] Owen G., “Values of games with a priory unions”, Essays in mathematical economics and game theory, eds. Henn R., Moeschlin O., Springer-Verlag, Berlin, 1977, 76–88 | DOI

[8] Shapley L. S., “A value for $n$-person games”, Contributions to the theory of games, v. II, eds. H. W. Kuhn, A. W. Tucker, Princeton University Press, Princeton, NJ, 1953, 307–317

[9] Zinchenko A. B., Mironenko G. V., Provotorova P. A., “A consensus value for games with coalition structure”, Mathematical games theory and applications, 2:1 (2010), 93–106 (in Russian)