Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2011_4_a33, author = {Ekaterina Shevkoplyas and Sergey Kostyunin}, title = {Modeling of {Environmental} {Projects} under {Condition} of a {Random} {Time} {Horizon}}, journal = {Contributions to game theory and management}, pages = {447--459}, publisher = {mathdoc}, volume = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a33/} }
TY - JOUR AU - Ekaterina Shevkoplyas AU - Sergey Kostyunin TI - Modeling of Environmental Projects under Condition of a Random Time Horizon JO - Contributions to game theory and management PY - 2011 SP - 447 EP - 459 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a33/ LA - en ID - CGTM_2011_4_a33 ER -
%0 Journal Article %A Ekaterina Shevkoplyas %A Sergey Kostyunin %T Modeling of Environmental Projects under Condition of a Random Time Horizon %J Contributions to game theory and management %D 2011 %P 447-459 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a33/ %G en %F CGTM_2011_4_a33
Ekaterina Shevkoplyas; Sergey Kostyunin. Modeling of Environmental Projects under Condition of a Random Time Horizon. Contributions to game theory and management, Tome 4 (2011), pp. 447-459. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a33/
[1] Basar T., Olsder G. J., Dynamic Noncooperative Game Theory, 2nd Edn., Academic Press, London, 1995 | Zbl
[2] Breton M., Zaccour G., Zahaf M., “A differential game of joint implementation of environmental projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | Zbl
[3] Burness H. Stuart, “A Note on Consistent Naive Intertemporal Decision Making and an Application to the Case of Uncertain Lifetime”, The Review of Economic Studies, 43:3 (1976), 547–549 | DOI | Zbl
[4] Boukas E. K., Haurie A., Michel P., “An Optimal Control Problem with a Random Stopping Time”, Journal of optimizationa theory and applications, 64:3 (1990), 471–480 | DOI | Zbl
[5] Chang F. R., Stochastic Optimization in Continuous Time, Cambridge Univ. Press, 2004
[6] Dockner E. J., Jorgensen S., van Long N., Sorger G., Differential Games in Economics and Management Science, Cambridge University Press, 2000 | Zbl
[7] Gelbaum B., Olmsted J., Counterexamples in Analysis, 1967
[8] Haurie A., “A Multigenerational Game Model to Analyze Sustainable Development”, Annals of Operations Research, 137:1 (2005), 369–386 | DOI | Zbl
[9] Marin-Solano J., Shevkoplyas E. V., “Non-constant discounting in differential games with random duration”, Collected papers of the Third International Conference Game Theory and Management (2009, St. Petersburg), Contributions to Game Theory and Management, 2010, 267–280
[10] Petrosjan L. A., Murzov N. V., “Game-theoretic problems of mechanics”, Litovsk. Mat. Sb., 6 (1966), 423–433 (in Russian) | Zbl
[11] Petrosjan L. A., Shevkoplyas E. V., “Cooperative Solutions for Games with Random Duration”, Game Theory and Applications, IX, Nova Science Publishers, 2003, 125–139
[12] Shevkoplyas E. V., “The Hamilton–Jacobi–Bellman equation for differential games with random duration”, Upravlenie bolshimi systemami, 26:1 (2009), 385–408 (in Russian)
[13] Shevkoplyas E. V., “The Shapley Value in cooperative differential games with random duration”, v. 4, Advances in Dynamic Games, 11, eds. M. Breton, K. Szajowski, Birkhäuser, Boston, 2011, 359–373 | DOI | Zbl
[14] Yaari M. E., “Uncertain Lifetime, Life Insurance, and the Theory of the Consumer”, The Review of Econimic Studies, 32:2 (1965), 137–150 | DOI
[15] Zorich V. A., Mathematical analysis, 2002