The $\Pi$-strategy: Analogies and Applications
Contributions to game theory and management, Tome 4 (2011), pp. 33-46

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of the strategy of parallel pursuit (briefly $\Pi$-strategy) was introduced and used to solve the quality problem in “the game with a survival zone” by L. A. Petrosyan. Further it was found other applications of $\Pi$-strategy. In the present work $\Pi$-strategy will be constructed in the cases when 1) a control function of Pursuer should be chosen from the space $L_2$ and that for Evader should be chosen from $L_\infty$; 2) control functions both of players should be chosen from the space $L_2$; 3) a control function of Pursuer should be chosen from intersection of spaces $L_2$ and $L_\infty$ while that for Evader should belong to $L_\infty$.
Keywords: differential game, Pursuer, Evader, strategy, parallel pursuit, domain of attainability, survival zone.
@article{CGTM_2011_4_a3,
     author = {A. A. Azamov and B. T. Samatov},
     title = {The $\Pi$-strategy: {Analogies} and {Applications}},
     journal = {Contributions to game theory and management},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a3/}
}
TY  - JOUR
AU  - A. A. Azamov
AU  - B. T. Samatov
TI  - The $\Pi$-strategy: Analogies and Applications
JO  - Contributions to game theory and management
PY  - 2011
SP  - 33
EP  - 46
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a3/
LA  - en
ID  - CGTM_2011_4_a3
ER  - 
%0 Journal Article
%A A. A. Azamov
%A B. T. Samatov
%T The $\Pi$-strategy: Analogies and Applications
%J Contributions to game theory and management
%D 2011
%P 33-46
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a3/
%G en
%F CGTM_2011_4_a3
A. A. Azamov; B. T. Samatov. The $\Pi$-strategy: Analogies and Applications. Contributions to game theory and management, Tome 4 (2011), pp. 33-46. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a3/