Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2011_4_a28, author = {Erich Prisner}, title = {Best {Response} {Digraphs} for {Two} {Location} {Games} on {Graphs}}, journal = {Contributions to game theory and management}, pages = {378--388}, publisher = {mathdoc}, volume = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a28/} }
Erich Prisner. Best Response Digraphs for Two Location Games on Graphs. Contributions to game theory and management, Tome 4 (2011), pp. 378-388. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a28/
[1] Hotelling H., “Stability in competition”, Economic Journal, 39 (1929), 41–57 | DOI
[2] Knoblauch V., “Generalizing Location Games to a Graph”, Journal of Industrial Economics, 34 (1991)
[3] Knoblauch V., “Geometric versions of finite games: Prisoner's dilemma, entry deterrence and a cyclical majority paradox”, International Journal of Game Theory, 24 (1995), 165–177 | DOI | Zbl
[4] Buneman P., “A characterization on rigid circuit graphs”, Discrete Math., 9 (1974), 205–212 | DOI | Zbl
[5] Gavril F., “The intersection graphs of subtrees of a tree are exactly the chordal graphs”, J. Comb. Theory B, 16 (1974), 46–56 | DOI
[6] Walter J. R., “Representations of chordal graphs as subtrees of a tree”, J. Graph Th., 12 (1978), 265–267 | DOI
[7] Cheong O., Har-Peled S., Linial N., Matous̆ek J., “The one-round Voronoi game”, Discrete and Computational Geometry, 31 (2004), 125–138 | DOI | Zbl
[8] Teramoto S., Demaine E., Uehara R., “Voronoi game on graphs and its complexity”, CIG'06, Proceedings of the IEEE Symposium on Computational Intelligence and Games (2006), 265–271
[9] Dürr C., Nguyen Kim T., “Nash equilibria in Voronoi games on graphs”, ESA'07, Proceedings of the 15th Annual European Symposium on Algorithms (2007), 17–28
[10] Kariv O., Hakimi S. L., “An algorithmic approach to network location problems. II: The $p$-medians”, SIAM J. Applied Math., 37 (1979), 539–560 | DOI | Zbl