On a Multistage Link Formation Game
Contributions to game theory and management, Tome 4 (2011), pp. 368-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a multistage network game with perfect information. In each stage of the game a network connecting players is given. In our setting we suppose that each network edge connecting two players has utility (utility of the first player from the connection with the second player), and players have the right to change the network structure in each stage. We propose a way of finding an optimal players behavior in this type of multistage game.
Keywords: network, network games, characteristic function, Shapley value, Nash equilibrium.
@article{CGTM_2011_4_a27,
     author = {Leon Petrosyan and Artem Sedakov},
     title = {On a {Multistage} {Link} {Formation} {Game}},
     journal = {Contributions to game theory and management},
     pages = {368--377},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a27/}
}
TY  - JOUR
AU  - Leon Petrosyan
AU  - Artem Sedakov
TI  - On a Multistage Link Formation Game
JO  - Contributions to game theory and management
PY  - 2011
SP  - 368
EP  - 377
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a27/
LA  - en
ID  - CGTM_2011_4_a27
ER  - 
%0 Journal Article
%A Leon Petrosyan
%A Artem Sedakov
%T On a Multistage Link Formation Game
%J Contributions to game theory and management
%D 2011
%P 368-377
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a27/
%G en
%F CGTM_2011_4_a27
Leon Petrosyan; Artem Sedakov. On a Multistage Link Formation Game. Contributions to game theory and management, Tome 4 (2011), pp. 368-377. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a27/

[1] Bellman R., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957 | Zbl

[2] Dutta B., van den Nouweland A., Tijs S., “Link formation in cooperative situations”, International Journal of Game Theory, 27 (1998), 245–256 | DOI | Zbl

[3] Kuhn H. W., “Extensive Games and Problem Information”, Ann. Math. Studies, 28 (1953), 193–216 | Zbl

[4] Myerson R., “Graphs and cooperation in games”, Mathematics of Operations Research, 2 (1977), 225–229 | DOI | Zbl

[5] Nash J., “Non-cooperative Games”, Ann. of Math., 54 (1951), 286–295 | DOI | Zbl

[6] Petrosjan L. A., Kusyutin D. V., Games in extensive form: optimality and stability, St. Petersburg Univ. Press, St. Petersburg, 2000

[7] Petrosjan L. A., Mamkina S. I., “Value for the Games with Changing Coalitional Structure”, Games Theory and Applications, 10 (2005), 141–152

[8] Petrosyan L., Sedakov A., “Multistage networking games with full information”, Upravlenie bolshimi sistemami, 26:1 (2009), 121–138 (in russian)

[9] Petrosjan L. A., Sedakov A. A., Syurin A. N., “Multistage Games with Coalitional Structure”, Viestnik of St. Petersburg Univ., Ser. 10, 3 (2006), 97–110

[10] Shapley L. S., “A Value for $n$-Person Games”, Contributions to the Theory of Games, II, Princeton University Press, Princeton, 1953, 307–317