Proportionality in NTU Games: on a Proportional Excess Invariant Solution
Contributions to game theory and management, Tome 4 (2011), pp. 361-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution for NTU games which is invariant with respect to proportional excess is defined. It generalizes the corresponding solution for TU games. The existence theorem is proved, and some properties of the solution are studied.
Keywords: NTU games, proportional excess, bargaining game, proportional invariant solution, directional sum of NTU games.
@article{CGTM_2011_4_a26,
     author = {Sergei L. Pechersky},
     title = {Proportionality in {NTU} {Games:} on a {Proportional} {Excess} {Invariant} {Solution}},
     journal = {Contributions to game theory and management},
     pages = {361--367},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a26/}
}
TY  - JOUR
AU  - Sergei L. Pechersky
TI  - Proportionality in NTU Games: on a Proportional Excess Invariant Solution
JO  - Contributions to game theory and management
PY  - 2011
SP  - 361
EP  - 367
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a26/
LA  - en
ID  - CGTM_2011_4_a26
ER  - 
%0 Journal Article
%A Sergei L. Pechersky
%T Proportionality in NTU Games: on a Proportional Excess Invariant Solution
%J Contributions to game theory and management
%D 2011
%P 361-367
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a26/
%G en
%F CGTM_2011_4_a26
Sergei L. Pechersky. Proportionality in NTU Games: on a Proportional Excess Invariant Solution. Contributions to game theory and management, Tome 4 (2011), pp. 361-367. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a26/

[1] Pechersky S., “Proportionality in NTU games: excesses and solutions”, Collected papers presented on the International Conference Game Theory and Management, Contributions to Game Theory and Management, I, St. Petersurg, 2007, 394–412

[2] Pechersky S., “Proportionality in bargaining games: status quo-proportional solution and consistency”, Collected papers presented on the International Conference Game Theory and Management, Contributions to Game Theory and Management, II, St. Petersurg, 2009, 334–343

[3] Pechersky S., Yanovskaya E., Cooperative games: solutions and axioms, European University at St. Petersburg Press, St. Petersburg, 2004 (In Russian)

[4] Rockafellar R. T., Convex analysis, Princeton University Press, Princeton, NJ, 1997 | Zbl