Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2011_4_a25, author = {Sehie Park}, title = {The {Fixed} {Point} {Method} {Versus} the {KKM} {Method}}, journal = {Contributions to game theory and management}, pages = {347--360}, publisher = {mathdoc}, volume = {4}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a25/} }
Sehie Park. The Fixed Point Method Versus the KKM Method. Contributions to game theory and management, Tome 4 (2011), pp. 347-360. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a25/
[1] Aliprantis C. D., Glycopantis D., Puzzello D., “The joint continuity of the expected payoff functions”, J. Math. Econ., 42 (2006), 121–130 | DOI | Zbl
[2] Begle E. G., “A fixed point theorem”, Ann. Math., 51 (1950), 544–550 | DOI | Zbl
[3] Becker J. G., Damianov D. S., “On the existence of symmetric mixed strategy equilibria”, Econ. Lett., 90 (2006), 84–87 | DOI | Zbl
[4] Browder F. E., “The fixed point theory of multi-valued mappings in topological vector spaces”, Math. Ann., 177 (1968), 283–301 | DOI | Zbl
[5] Chang S.-Y., “Inequalities and Nash equilibria”, Nonlinear Anal., 73 (2010), 2933–2940 | DOI | Zbl
[6] Debreu G., “A social equilibrium existence theorem”, Proc. Nat. Acad. Sci. USA, 38 (1952), 886–893 ; Mathematical Economics: Twenty Papers of Gerald Debreu, Chap. 2, Cambridge Univ. Press, 1983 | DOI | Zbl | DOI
[7] Eilenberg S., Montgomery D., “Fixed point theorems for multivalued transformations”, Amer. J. Math., 68 (1946), 214–222 | DOI | Zbl
[8] Fan K., “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126 | DOI | Zbl
[9] Fan K., “A generalization of Tychonoff's fixed point theorem”, Math. Ann., 142 (1961), 305–310 | DOI | Zbl
[10] Fan K., “Applications of a theorem concerning sets with convex sections”, Math. Ann., 163 (1966), 189–203 | DOI | Zbl
[11] Fan K., “A minimax inequality and applications”, Inequalities, v. III, ed. O. Shisha, Academic Press, New York, 1972, 103–113
[12] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3 (1952), 170–174
[13] Granas A., Liu F.-C., “Coincidences for set-valued maps and minimax inequalities”, J. Math. Pures et Appl., 65 (1986), 119–148 | Zbl
[14] Gwinner J., “On fixed points and variational inequalities — A circular tour”, Nonlinear Anal., 5 (1981), 565–583 | DOI | Zbl
[15] Himmelberg C. J., “Fixed points of compact multifunctions”, J. Math. Anal. Appl., 38 (1972), 205–207 | DOI
[16] Hou J.-C., “Characterization of the existence of a pure-strategy Nash equilibrium”, Appl. Math. Letters, 22 (2009), 689–692 | DOI | Zbl
[17] Kakutani S., “A generalization of Brouwer fixed point theorem”, Duke Math. J., 8 (1941), 457–459 | DOI
[18] Knaster B., Kuratowski C., Mazurkiewicz S., “Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe”, Fund. Math., 14 (1929), 132–137 | Zbl
[19] Lin Y. J., Tian G., “Minimax inequalities equivalent to the Fan–Knaster–Kuratowski–Mazurkiewicz theorem”, Appl. Math. Optim., 28 (1993), 173–179 | DOI | Zbl
[20] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | Zbl
[21] Nash J., “Non-cooperative games”, Ann. Math., 54 (1951), 286–293 | DOI
[22] Park S., “A generalized minimax inequality related to admissible multimaps and its applications”, J. Korean Math. Soc., 34 (1997), 719–730 | Zbl
[23] Park S., “Remarks on a social equilibrium existence theorem of G. Debreu”, Appl. Math. Lett., 11 (1998), 51–54 | DOI | Zbl
[24] Park S., “Ninety years of the Brouwer fixed point theorem”, Vietnam J. Math., 27 (1999), 187–222 | Zbl
[25] Park S., “Generalizations of the Nash equilibrium theorem on generalized convex spaces”, J. Korean Math. Soc., 38 (2001), 697–709 | Zbl
[26] Park S., “Elements of the KKM theory on abstract convex spaces”, J. Korean Math. Soc., 45 (2008), 1–27 | DOI | Zbl
[27] Park S., “Equilibrium existence theorems in KKM spaces”, Nonlinear Anal., 69 (2008), 4352–4364 | DOI | Zbl
[28] Park S., “New foundations of the KKM theory”, J. Nonlinear Convex Anal., 9 (2008), 331–350 | Zbl
[29] Park S., “Generalizations of the Himmelberg fixed point theorem”, Fixed Point Theory and Its Applications, Proc. ICFPTA-2007, Yokohama Publ., 2008, 123–132 | Zbl
[30] Park S., “Fixed point theory of multimaps in abstract convex uniform spaces”, Nonlinear Anal., 71 (2009), 2468–2480 | DOI | Zbl
[31] Park S., “Generalizations of the Nash equilibrium theorem in the KKM theory”, Fixed Point Theory and Appl., 2010 (2010), 234706, 23 pp. | DOI | Zbl
[32] Park S., “The KKM principle in abstract convex spaces: Equivalent formulations and applications”, Nonlinear Anal., 73 (2010), 1028–1042 | DOI | Zbl
[33] Park S., “From the KKM principle to the Nash equilibria”, Inter. J. Math. Stat., 6:S10 (2010), 77–88
[34] Park S., “Further generalizations of the Gale–Nikaido–Debreu theorem”, J. Appl. Math. Comp., 32:1 (2010), 171–176 | DOI | Zbl
[35] Park S., Further extension of a social equilibrium existence theorem of G. Debreu, 2011 (to appear)
[36] Park S., A genesis of general KKM theorems for abstract convex spaces, 2011 (to appear)
[37] Sion M., “On general minimax theorems”, Pacific J. Math., 8 (1958), 171–176 | DOI | Zbl
[38] von Neumann J., “Zur Theorie der Gesellschaftsspiele”, Math. Ann., 100 (1928), 295–320 | DOI | Zbl
[39] von Neumann J., “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes”, Ergeb. Math. Kolloq., 8 (1937), 73–83
[40] Zeidler E., Nonlinear functional analyses and its Applications, v. I, Fixed-point theorems, Springer-Verlag, New York, 1986 | Zbl
[41] Zhou J. X., Chen G., “Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities”, J. Math. Anal. Appl., 132 (1988), 213–225 | DOI | Zbl