The Fixed Point Method Versus the KKM Method
Contributions to game theory and management, Tome 4 (2011), pp. 347-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey, we compare the fixed point method and the KKM method in nonlinear analysis. Especially, we consider two methods in the proofs of the following important theorems in the chronological order: (1) The von Neumann minimax theorem, (2) The von Neumann intersection lemma, (3) The Nash equilibrium theorem, (4) The social equilibrium existence theorem of Debreu, (5) The Gale-Nikaido-Debreu theorem, (6) The Fan-Browder fixed point theorem, (7) Generalized Fan minimax inequality, and (8) The Himmelberg fixed point theorem.
Keywords: KKM type theorems; Fixed point; Minimax theorem; Nash equilibria.
@article{CGTM_2011_4_a25,
     author = {Sehie Park},
     title = {The {Fixed} {Point} {Method} {Versus} the {KKM} {Method}},
     journal = {Contributions to game theory and management},
     pages = {347--360},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a25/}
}
TY  - JOUR
AU  - Sehie Park
TI  - The Fixed Point Method Versus the KKM Method
JO  - Contributions to game theory and management
PY  - 2011
SP  - 347
EP  - 360
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a25/
LA  - en
ID  - CGTM_2011_4_a25
ER  - 
%0 Journal Article
%A Sehie Park
%T The Fixed Point Method Versus the KKM Method
%J Contributions to game theory and management
%D 2011
%P 347-360
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a25/
%G en
%F CGTM_2011_4_a25
Sehie Park. The Fixed Point Method Versus the KKM Method. Contributions to game theory and management, Tome 4 (2011), pp. 347-360. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a25/

[1] Aliprantis C. D., Glycopantis D., Puzzello D., “The joint continuity of the expected payoff functions”, J. Math. Econ., 42 (2006), 121–130 | DOI | Zbl

[2] Begle E. G., “A fixed point theorem”, Ann. Math., 51 (1950), 544–550 | DOI | Zbl

[3] Becker J. G., Damianov D. S., “On the existence of symmetric mixed strategy equilibria”, Econ. Lett., 90 (2006), 84–87 | DOI | Zbl

[4] Browder F. E., “The fixed point theory of multi-valued mappings in topological vector spaces”, Math. Ann., 177 (1968), 283–301 | DOI | Zbl

[5] Chang S.-Y., “Inequalities and Nash equilibria”, Nonlinear Anal., 73 (2010), 2933–2940 | DOI | Zbl

[6] Debreu G., “A social equilibrium existence theorem”, Proc. Nat. Acad. Sci. USA, 38 (1952), 886–893 ; Mathematical Economics: Twenty Papers of Gerald Debreu, Chap. 2, Cambridge Univ. Press, 1983 | DOI | Zbl | DOI

[7] Eilenberg S., Montgomery D., “Fixed point theorems for multivalued transformations”, Amer. J. Math., 68 (1946), 214–222 | DOI | Zbl

[8] Fan K., “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121–126 | DOI | Zbl

[9] Fan K., “A generalization of Tychonoff's fixed point theorem”, Math. Ann., 142 (1961), 305–310 | DOI | Zbl

[10] Fan K., “Applications of a theorem concerning sets with convex sections”, Math. Ann., 163 (1966), 189–203 | DOI | Zbl

[11] Fan K., “A minimax inequality and applications”, Inequalities, v. III, ed. O. Shisha, Academic Press, New York, 1972, 103–113

[12] Glicksberg I. L., “A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points”, Proc. Amer. Math. Soc., 3 (1952), 170–174

[13] Granas A., Liu F.-C., “Coincidences for set-valued maps and minimax inequalities”, J. Math. Pures et Appl., 65 (1986), 119–148 | Zbl

[14] Gwinner J., “On fixed points and variational inequalities — A circular tour”, Nonlinear Anal., 5 (1981), 565–583 | DOI | Zbl

[15] Himmelberg C. J., “Fixed points of compact multifunctions”, J. Math. Anal. Appl., 38 (1972), 205–207 | DOI

[16] Hou J.-C., “Characterization of the existence of a pure-strategy Nash equilibrium”, Appl. Math. Letters, 22 (2009), 689–692 | DOI | Zbl

[17] Kakutani S., “A generalization of Brouwer fixed point theorem”, Duke Math. J., 8 (1941), 457–459 | DOI

[18] Knaster B., Kuratowski C., Mazurkiewicz S., “Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe”, Fund. Math., 14 (1929), 132–137 | Zbl

[19] Lin Y. J., Tian G., “Minimax inequalities equivalent to the Fan–Knaster–Kuratowski–Mazurkiewicz theorem”, Appl. Math. Optim., 28 (1993), 173–179 | DOI | Zbl

[20] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | Zbl

[21] Nash J., “Non-cooperative games”, Ann. Math., 54 (1951), 286–293 | DOI

[22] Park S., “A generalized minimax inequality related to admissible multimaps and its applications”, J. Korean Math. Soc., 34 (1997), 719–730 | Zbl

[23] Park S., “Remarks on a social equilibrium existence theorem of G. Debreu”, Appl. Math. Lett., 11 (1998), 51–54 | DOI | Zbl

[24] Park S., “Ninety years of the Brouwer fixed point theorem”, Vietnam J. Math., 27 (1999), 187–222 | Zbl

[25] Park S., “Generalizations of the Nash equilibrium theorem on generalized convex spaces”, J. Korean Math. Soc., 38 (2001), 697–709 | Zbl

[26] Park S., “Elements of the KKM theory on abstract convex spaces”, J. Korean Math. Soc., 45 (2008), 1–27 | DOI | Zbl

[27] Park S., “Equilibrium existence theorems in KKM spaces”, Nonlinear Anal., 69 (2008), 4352–4364 | DOI | Zbl

[28] Park S., “New foundations of the KKM theory”, J. Nonlinear Convex Anal., 9 (2008), 331–350 | Zbl

[29] Park S., “Generalizations of the Himmelberg fixed point theorem”, Fixed Point Theory and Its Applications, Proc. ICFPTA-2007, Yokohama Publ., 2008, 123–132 | Zbl

[30] Park S., “Fixed point theory of multimaps in abstract convex uniform spaces”, Nonlinear Anal., 71 (2009), 2468–2480 | DOI | Zbl

[31] Park S., “Generalizations of the Nash equilibrium theorem in the KKM theory”, Fixed Point Theory and Appl., 2010 (2010), 234706, 23 pp. | DOI | Zbl

[32] Park S., “The KKM principle in abstract convex spaces: Equivalent formulations and applications”, Nonlinear Anal., 73 (2010), 1028–1042 | DOI | Zbl

[33] Park S., “From the KKM principle to the Nash equilibria”, Inter. J. Math. Stat., 6:S10 (2010), 77–88

[34] Park S., “Further generalizations of the Gale–Nikaido–Debreu theorem”, J. Appl. Math. Comp., 32:1 (2010), 171–176 | DOI | Zbl

[35] Park S., Further extension of a social equilibrium existence theorem of G. Debreu, 2011 (to appear)

[36] Park S., A genesis of general KKM theorems for abstract convex spaces, 2011 (to appear)

[37] Sion M., “On general minimax theorems”, Pacific J. Math., 8 (1958), 171–176 | DOI | Zbl

[38] von Neumann J., “Zur Theorie der Gesellschaftsspiele”, Math. Ann., 100 (1928), 295–320 | DOI | Zbl

[39] von Neumann J., “Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes”, Ergeb. Math. Kolloq., 8 (1937), 73–83

[40] Zeidler E., Nonlinear functional analyses and its Applications, v. I, Fixed-point theorems, Springer-Verlag, New York, 1986 | Zbl

[41] Zhou J. X., Chen G., “Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities”, J. Math. Anal. Appl., 132 (1988), 213–225 | DOI | Zbl