On Games with Constant Nash Sum
Contributions to game theory and management, Tome 4 (2011), pp. 294-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of games in strategic form with the following property is identified: for every $\mathbf{n} \in E$, i.e. Nash equilibrium, the (Nash) sum $\sum_l n^l$ is constant. For such a game sufficient conditions for $E$ to be polyhedral and semi-uniqueness (i.e. $\# E \leq 1$) are given. The abstract results are illustrated by applying them to a class of games that covers various types of Cournot oligopoly and transboundary pollution games. The way of obtaining the results is by analysing so-called left and right marginal reductions.
Keywords: Oligopoly, transboundary pollution, Hahn conditions, aggregative game, co-strategy mapping, marginal reduction, non-differentiable payoff function, structure of set of Nash equilibria, game in strategic form, convex analysis.
@article{CGTM_2011_4_a21,
     author = {Pierre von Mouche},
     title = {On {Games} with {Constant} {Nash} {Sum}},
     journal = {Contributions to game theory and management},
     pages = {294--310},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/}
}
TY  - JOUR
AU  - Pierre von Mouche
TI  - On Games with Constant Nash Sum
JO  - Contributions to game theory and management
PY  - 2011
SP  - 294
EP  - 310
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/
LA  - en
ID  - CGTM_2011_4_a21
ER  - 
%0 Journal Article
%A Pierre von Mouche
%T On Games with Constant Nash Sum
%J Contributions to game theory and management
%D 2011
%P 294-310
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/
%G en
%F CGTM_2011_4_a21
Pierre von Mouche. On Games with Constant Nash Sum. Contributions to game theory and management, Tome 4 (2011), pp. 294-310. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/

[1] Amir R., “Cournot oligopoly and the theory of supermodular games”, Games and Economic Behavior, 15 (1996), 132–148 | DOI | Zbl

[2] Corchón L. C., Theories of Imperfectly Competitive Markets, Lecture Notes in Economics and Mathematical Systems, 442, second edition, Springer-Verlag, Berlin, 2001

[3] Cornes R., Hartley R., The geometry of aggregative games, Economic Discussion Paper EDP-0514, School of Social Sciences, The University of Manchester, 2005

[4] Ewerhart C., Cournot oligoply and concavo-concave demand, Working paper, No 9, Institue for Empirical Research in Economics, University of Zürich, 2009

[5] Finus M., Game Theory and International Environmental Cooperation, Edward Elgar, Cheltenham, UK, 2001

[6] Folmer H., von Mouche P. H. M., “The acid rain game: a formal and mathematically rigorous analysis”, Festschrift in Honor of Karl-Göran Mäler, eds. P. Dasgupta, B. Kriström, K. Löfgren (eds.), Edward Elgar, Cheltenham, 2002, 138–161

[7] Folmer H., von Mouche P. H. M., “On a less known Nash equilibrium uniqueness result”, Journal of Mathematical Sociology, 28 (2004), 67–80 | DOI | Zbl

[8] Friedman J., Game Theory with Applications to Economics, Oxford University Press, Oxford, 1991

[9] Gaudet G., Salant S. W., “Uniqueness of cournot equilibrium: New results from old methods”, The Review of Economic Studies, 58:2 (1991), 399–404 | DOI | Zbl

[10] Hiriart-Urruty J., Lemaréchal C., Convex Analysis and Minimization Algorithms, Grundlehren der mathematischen Wissenschaften, 305, Springer-Verlag, Berlin, 1993 | DOI | Zbl

[11] Murphy F. H., Sherali H. D., Soyster A. L., “A mathematical programming approach for determining oligopolistic market equilibrium”, Mathematical Programming, 24 (1982), 92–106 | DOI | Zbl

[12] Novshek W., “On the existence of {C}ournot equilibrium”, Review of Economic Studies, 52:1 (1985), 85–98 | DOI | Zbl

[13] Okuguchi K., Expectations and Stability in Oligopoly Models, Springer-Verlag, Berlin, 1976 | Zbl

[14] Szidarovszky F., Yakowitz S., “A new proof of the existence and uniqueness of the {C}ournot equilibrium”, International Economic Review, 18 (1977), 787–789 | DOI | Zbl

[15] Szidarovszky F., Yakowitz S., “Contributions to Cournot oligopoly theory”, Journal of Economic Theory, 28 (1982), 51–70 | DOI | Zbl

[16] von Mouche P. H. M., “Non-differentiability of payoff functions and non-uniqueness of Nash equilibria”, World Academy of Science, Engineering and Technology, 53 (2009), 731–736

[17] Watts A., “On the uniqueness of equilibrium in Cournot oligopoly and other games”, Games and Economic Behavior, 13 (1996), 269–285 | DOI | Zbl