On Games with Constant Nash Sum
Contributions to game theory and management, Tome 4 (2011), pp. 294-310

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of games in strategic form with the following property is identified: for every $\mathbf{n} \in E$, i.e. Nash equilibrium, the (Nash) sum $\sum_l n^l$ is constant. For such a game sufficient conditions for $E$ to be polyhedral and semi-uniqueness (i.e. $\# E \leq 1$) are given. The abstract results are illustrated by applying them to a class of games that covers various types of Cournot oligopoly and transboundary pollution games. The way of obtaining the results is by analysing so-called left and right marginal reductions.
Keywords: Oligopoly, transboundary pollution, Hahn conditions, aggregative game, co-strategy mapping, marginal reduction, non-differentiable payoff function, structure of set of Nash equilibria, game in strategic form, convex analysis.
@article{CGTM_2011_4_a21,
     author = {Pierre von Mouche},
     title = {On {Games} with {Constant} {Nash} {Sum}},
     journal = {Contributions to game theory and management},
     pages = {294--310},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/}
}
TY  - JOUR
AU  - Pierre von Mouche
TI  - On Games with Constant Nash Sum
JO  - Contributions to game theory and management
PY  - 2011
SP  - 294
EP  - 310
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/
LA  - en
ID  - CGTM_2011_4_a21
ER  - 
%0 Journal Article
%A Pierre von Mouche
%T On Games with Constant Nash Sum
%J Contributions to game theory and management
%D 2011
%P 294-310
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/
%G en
%F CGTM_2011_4_a21
Pierre von Mouche. On Games with Constant Nash Sum. Contributions to game theory and management, Tome 4 (2011), pp. 294-310. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a21/