Non-Cooperative Games with Chained Confirmed Proposals
Contributions to game theory and management, Tome 4 (2011), pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a bargaining process with alternating proposals as a way of solving non-cooperative games, giving rise to Pareto efficient agreements which will, in general, differ from the Nash equilibrium of the original games.
Keywords: Bargaining; Confirmed Proposals; Confirmed Agreement.
@article{CGTM_2011_4_a2,
     author = {G. Attanasi and A. Garc{\'\i}a-Gallego and N. Georgantz{\'\i}s and A. Montesano},
     title = {Non-Cooperative {Games} with {Chained} {Confirmed} {Proposals}},
     journal = {Contributions to game theory and management},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2011_4_a2/}
}
TY  - JOUR
AU  - G. Attanasi
AU  - A. García-Gallego
AU  - N. Georgantzís
AU  - A. Montesano
TI  - Non-Cooperative Games with Chained Confirmed Proposals
JO  - Contributions to game theory and management
PY  - 2011
SP  - 19
EP  - 32
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2011_4_a2/
LA  - en
ID  - CGTM_2011_4_a2
ER  - 
%0 Journal Article
%A G. Attanasi
%A A. García-Gallego
%A N. Georgantzís
%A A. Montesano
%T Non-Cooperative Games with Chained Confirmed Proposals
%J Contributions to game theory and management
%D 2011
%P 19-32
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2011_4_a2/
%G en
%F CGTM_2011_4_a2
G. Attanasi; A. García-Gallego; N. Georgantzís; A. Montesano. Non-Cooperative Games with Chained Confirmed Proposals. Contributions to game theory and management, Tome 4 (2011), pp. 19-32. http://geodesic.mathdoc.fr/item/CGTM_2011_4_a2/

[1] Binmore K., “Perfect equilibria in bargaining models”, Economics of Bargaining, eds. K. Binmore, P. Dasgupta, Cambridge University Press, Cambridge, 1987

[2] Cubitt R., Sugden R., “Rationally justifiable play and the theory of non-cooperative games”, Economic Journal, 104 (1994), 798–803 | DOI

[3] Friedman J. W., “A non-cooperative equilibrium for supergames”, Review of Economic Studies, 38 (1971), 1–12 | DOI | Zbl

[4] Harsanyi J., “Approaches to the bargaining problem before and after the theory of games: A critical discussion of Zeuthen's, Hicks', and Nash's theories”, Econometrica, 24 (1956), 144–157 | DOI | MR | Zbl

[5] Harsanyi J., “On the rationality postulates underlying the theory of cooperative games”, Journal of Conflict Resolution, 5 (1961), 179–196 | DOI

[6] Harsanyi J., “Bargaining in ignorance of the opponent's utility function”, Journal of Conflict Resolution, 6 (1962), 29–38 | DOI

[7] Muthoo A., “A note on bargaining over a finite number of feasible agreements”, Economic Theory, 1 (1991), 290–292 | DOI | MR | Zbl

[8] Nash J., “The bargaining problem”, Econometrica, 18 (1950), 155–162 | DOI | MR | Zbl

[9] Nash J., “Two-person cooperative games”, Econometrica, 21 (1953), 128–140 | DOI | MR | Zbl

[10] Rubinstein A., “Perfect equilibrium in a bargaining model”, Econometrica, 50 (1982), 97–109 | DOI | MR | Zbl

[11] Smale S., “The Prisoner's Dilemma and Dynamical Systems Associated to Non-cooperative Games”, Econometrica, 48 (1980), 1617–1634 | DOI | MR | Zbl

[12] Sutton J., “Non-cooperative bargaining theory: An introduction”, Review of Economic Studies, 53 (1986), 709–724 | DOI | MR | Zbl