On the Notion of Dimension and Codimension of Simple Games
Contributions to game theory and management, Tome 3 (2010), pp. 67-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents novel concept of a dimension and codimension for the class of simple games. It introduces a dual concept of a dimension which is obtained by considering the union instead of the intersection as the basic operation, and several other extensions of the notion of dimension. It also shows the existence and uniqueness of a minimum subclasses of games, with the property that every simple game can be expressed as an intersection, or respectively, the union of them. We show the importance of these subclasses in the description of a simple game, and give a practical interpretation of them.
Keywords: Simple games; Hypergraphs; Boolean algebra; Dimension and codimension; dimensionally minimum class of simple games.
@article{CGTM_2010_3_a6,
     author = {Josep Freixas and Dorota Marciniak},
     title = {On the {Notion} of {Dimension} and {Codimension} of {Simple} {Games}},
     journal = {Contributions to game theory and management},
     pages = {67--81},
     publisher = {mathdoc},
     volume = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a6/}
}
TY  - JOUR
AU  - Josep Freixas
AU  - Dorota Marciniak
TI  - On the Notion of Dimension and Codimension of Simple Games
JO  - Contributions to game theory and management
PY  - 2010
SP  - 67
EP  - 81
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a6/
LA  - en
ID  - CGTM_2010_3_a6
ER  - 
%0 Journal Article
%A Josep Freixas
%A Dorota Marciniak
%T On the Notion of Dimension and Codimension of Simple Games
%J Contributions to game theory and management
%D 2010
%P 67-81
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2010_3_a6/
%G en
%F CGTM_2010_3_a6
Josep Freixas; Dorota Marciniak. On the Notion of Dimension and Codimension of Simple Games. Contributions to game theory and management, Tome 3 (2010), pp. 67-81. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a6/

[1] Algaba E., Bilbao J. M., Fernández J. R., López J. J., “El índice de poder de {B}anzhaf en la {U}nión {E}uropea ampliada”, Qüestiió, 25 (2001), 71–90 | MR | Zbl

[2] Brams S. J., Affuso P. J., “Power and size: A new paradox”, Theory and Decision, 7 (1976), 29–56 | DOI | MR

[3] Carreras F., Freixas J., “A power analysis of linear games with consensus”, Mathematical Social Sciences, 48 (2004), 207–221 | DOI | MR | Zbl

[4] Carreras F., Freixas J., “On ordinal equivalence of power measures given by regular semivalues”, Mathematical Social Sciences, 55 (2008), 221–234 | DOI | MR | Zbl

[5] Deĭneko V. G., Woeginger G. J., “On the dimension of simple monotonic games”, European Journal of Operational Research, 170 (2006), 315–318 | DOI

[6] Dushnik B., Miller E. W., “Partially ordered sets”, American {J}ournal of {M}athematics, 63 (1941), 600–610 | MR

[7] Felsenthal D. S., Machover M., “Ternary voting games”, International Journal of Game Theory, 26 (1997), 335–351 | DOI | MR | Zbl

[8] Fishburn P. C., The {T}heory of {S}ocial {C}hoice, {P}rinceton {U}niversity {P}ress, Princeton, 1973 | MR

[9] Freixas J., “The dimension for the {E}uropean {U}nion {C}ouncil under the {N}ice rules”, European Journal of Operational Research, 156:2 (2004), 415–419 | DOI | Zbl

[10] Freixas J., Molinero X., Olsen M., Serna M., On the complexity of problems on simple games, 2008, arXiv: 0803.0404v1

[11] Freixas J., Marciniak D., “A minimum dimensional class of simple games”, TOP. An Official Journal of Spanish Society of Statistics and Operations Research, 2009 | MR

[12] Freixas J., Puente M. A., “A note about games-composition dimension”, Discrete Applied Mathematics, 113 (2001), 265–273 | DOI | MR | Zbl

[13] Freixas J., Puente M. A., “Dimension of complete simple games with minimum”, European Journal of Operational Research, 188 (2008), 565–568 | DOI | MR

[14] Freixas J., Zwicker W. S., “Weighted voting, abstention, and multiple levels of approval”, Social Choice and Welfare, 21 (2003), 399–431 | DOI | MR | Zbl

[15] Isbell J. R., “A class of majority games”, Quart. J. Math. Oxford Ser., 7:2 (1956), 183–187 | DOI | MR | Zbl

[16] Isbell J. R., “A class of simple games”, Duke Mathematics Journal, 25 (1958), 423–439 | DOI | MR | Zbl

[17] Jereslow R. G., “On defining sets of vertices of the hypercube by linear inequalities”, Discrete Mathematics, 11 (1975), 119–124 | DOI | MR

[18] Kilgour D. M., “A formal analysis of the amending formula of {C}anada's {C}onstitution {A}ct”, Canadian {J}ournal of {P}olitical {S}cience, 16 (1983), 771–777 | DOI

[19] Levesque T. J., Kilgour D. M., “The {C}anadian constitutional amending formula: {B}argaining in the past and in the future”, Public Choice, 44 (1984), 457–480 | DOI

[20] Maschler M., Peleg B., “A characterization, existence proof, and dimension bounds for the kernel of a game”, Pacific Journal of Mathematics, 18 (1966), 289–328 | DOI | MR | Zbl

[21] Peleg B., “Voting by count and account”, Rational Interaction, ed. R. Selten, Springer-Verlag, 1992, 45–52 | DOI

[22] Ramamurthy K. G., Coherent structures and simple games, Kluwer {A}cademic {P}ublishers, Dordrecht, The Netherlands, 1990 | MR | Zbl

[23] Rubenstein A., “Stability of decision systems under majority rule”, Journal of {E}conomic {T}heory, 23 (1980), 150–159 | MR

[24] Shapley L. S., Compound simple games. I: Solutions of sums and products, RM-3192, The {RAND} Corporation, Santa Monica, CA, 1962

[25] Taylor A. D., Mathematics and Politics, Springer-Verlag, New York, USA, 1995 | MR

[26] Taylor A. D., Zwicker W. S., “Weighted voting, multicameral representation, and power”, Games and Economic Behavior, 5 (1993), 170–181 | DOI | MR | Zbl

[27] Taylor A. D., Zwicker W. S., “Simple games and magic squares”, Journal of combinatorial theory, ser. A, 71 (1995), 67–88 | DOI | MR | Zbl

[28] Taylor A. D., Zwicker W. S., Simple games: desirability relations, trading, and pseudoweightings, Princeton {U}niversity {P}ress, New Jersey, USA, 1999 | MR | Zbl

[29] Tchantcho B., Diffo Lambo L., Pongou R., Mbama Engoulou B., “Voters' power in voting games with abstention: Influence relation and ordinal equivalence of power theories”, Games and Economic Behavior, 64 (2008), 335–350 | DOI | MR | Zbl