Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2010_3_a4, author = {Irinel Dragan}, title = {A {Dynamic} {Algorithm} for {Computing} {Multiweighted} {Shapley} {Values} {of~Cooperative} {TU} {Games}}, journal = {Contributions to game theory and management}, pages = {40--48}, publisher = {mathdoc}, volume = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a4/} }
TY - JOUR AU - Irinel Dragan TI - A Dynamic Algorithm for Computing Multiweighted Shapley Values of~Cooperative TU Games JO - Contributions to game theory and management PY - 2010 SP - 40 EP - 48 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a4/ LA - en ID - CGTM_2010_3_a4 ER -
Irinel Dragan. A Dynamic Algorithm for Computing Multiweighted Shapley Values of~Cooperative TU Games. Contributions to game theory and management, Tome 3 (2010), pp. 40-48. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a4/
[1] Aumann R., Dreze J., “Cooperative games with coalition structures”, IJGT, 3 (1974), 217–237 | MR | Zbl
[2] Derks J., Van der Laan G., Vasiliev V., “Characterization of the random order values by Harsanyi payoff vectors”, Math. Oper. Res., 64 (2006), 155–163 | DOI | MR | Zbl
[3] Dragan I., “On the Multiweighted Shapley Values and the Random Order Values”, Proceedings of the 10th Conference on Applied Mathematics, Univ. Central OK, Edmond OK, 1994, 33–47
[4] Dragan I., “On the computation of Semivalues via the Shapley Value”, Proceedings of the 4th Workshop on Cooperative Game Theory (Enschede, The Netherlands, 2005), eds. T. S. H. Driessen, J. B. Timmer, A. B. Khmelnitskaya
[5] Dubey P., Neyman A., Weber R. J., “Value theory without efficiency”, Math. O. R., 6 (1981), 120–128 | MR
[6] Gilboa I., Monderer D., “Quasi-values on subspaces”, IJGT, 20 (1991), 353–363 | MR
[7] Harsanyi J. C., “A simplified bargaining model for the $n$-person game”, Int. Econ. Review, 4 (1963), 194–220 | DOI | Zbl
[8] Kalai E., Samet D., “On weighted values”, IJGT, 16 (1987), 205–222 | MR | Zbl
[9] Maschler M., “The worth of a cooperative enterprise to each member”, Games, Economics Dynamics and Time Series Analysis, Physica Verlag, Wien, 1982, 67–73
[10] Naumova N., “Nonsymmetric values under Hart-Mas Colell consistency”, IJGT, 33 (2005), 523–534 | MR | Zbl
[11] Owen G., Game Theory, 3rd edition, Academic Press, New York, 1995 | MR
[12] Owen G., “Values for games with apriori unions”, Essays in Mathematical Economics and Game Theory, eds. R. Hahn, O. Moeschlin, Springer-Verlag, 1977, 76–88 | DOI | MR
[13] Ruiz L., Valenciano F., Zarzuelo J. M., “The family of Least Square Values for TU games”, GEB, 27 (1998), 109–130 | MR
[14] Shapley L. S., “A value for $n$-person games”, Contributions to the Theory of Games, v. 2, Ann. Math. Studies, 28, eds. H. Kuhn, A. W. Tucker, Cambridge Univ. Press, Cambridge, 1953, 307–317 | MR
[15] Shapley L. S., Additive and Non-additive set functions, Ph. D. Thesis, Princeton University, 1953 | MR
[16] Vasiliev V., “Weber polyhedron and Weighted Shapley Values”, IGTR, 9:1 (2007), 139–150 | MR
[17] Vasiliev V., “On $H$-payoffs for cooperative games”, Optimizacija, 24 (1980), 18–32
[18] Vasiliev V., Van der Laan G., “The Harsanyi set for cooperative TU games”, Siberian Adv. Math., 12:2 (2002), 92–128 | MR
[19] Weber R. J., “Probabilistic values for games”, The Shapley Value, Essays in Honor of L. S. Shapley, ed. A. E. Roth, Cambridge Univ. Press, Cambridge, 1988, 101–119 | DOI | MR