Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2010_3_a31, author = {Elena B. Yanovskaya}, title = {The {Nucleolus} and the $\tau$-value of {Interval} {Games}}, journal = {Contributions to game theory and management}, pages = {421--430}, publisher = {mathdoc}, volume = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a31/} }
Elena B. Yanovskaya. The Nucleolus and the $\tau$-value of Interval Games. Contributions to game theory and management, Tome 3 (2010), pp. 421-430. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a31/
[1] Alparslan Gök S. Z., Branzei R., Tijs S., Cores and stable sets for interval-valued games, Preprint No 113, Institute of Applied Mathematics, METU and Tilburg University, Center for Economic Research, The Netherlands, CentER, DP 63, Tilburg, 2008
[2] Branzei R., Tijs S. Z., Alparslan Gök S. Z., How to handle interval solutions for cooperative interval games, Preprint No 110, Institute of Applied Mathematics, METU, 2008
[3] Alparslan Gök S. Z., Miquel S., Tijs S., “Cooperation under interval uncertainty”, Mathematical Methods of Operations Research, 69 (2009), 99–109 | DOI | MR | Zbl
[4] Alparslan Gök S. Z., Branzei R., Tijs S., “Convex interval games”, Journal of Applied Mathematics and Decision Sciences, 2009, 342089, 14 pp. | DOI | MR | Zbl
[5] Charnes A., Granot D., “Prior solutions: extensions of convex nucleolus solutions to chance-constrained games”, Proceedings of the Computer Science and Statistics Seventh Symposium (Iowa State University, 2007), 323–332
[6] Hokari T., “The nucleolus is not aggregate monotonic on the domain of convex games”, International Journal of Game Theory, 29 (2000), 133–137 | DOI | MR | Zbl
[7] Hokari T., van Gellekom A., “Population monotonicity and consistency in convex games: Some logical relations”, International Journal of Game Theory, 31 (2002), 593–607 | DOI | MR | Zbl
[8] Kohlberg E., “On the nucleolus of a characteristic function game”, SIAM Journal of Applied Mathematics, 20 (1971), 62–66 | DOI | MR | Zbl
[9] Megiddo N., “On the nonmonotonicity of the bargaining set, the kerne, and the nucleolus of a game”, SIAM Journal of Applied Mathematics, 3 (1987), 189–196 | MR
[10] Schmeidler D., “The nucleolus of a characteristic function game”, SIAM J. Appl. Math., 17:6 (1969), 1163–1170 | DOI | MR | Zbl
[11] Suijs J., Borm P., de Waegenaere A., Tijs S., “Cooperative games with stochastic payoffs”, European Journal of Operational Research, 133 (1999), 193–205 | DOI
[12] Tijs S. H., “An axiomatization of the $\tau$-value”, Mathematical Social Sciences, 13 (1987), 177–181 | DOI | MR | Zbl
[13] Timmer J., Borm P., Tijs S., “Convexity in stochastic cooperative situations”, International Game Theory Review, 7 (2005), 25–42 | DOI | MR | Zbl
[14] Yanovskaya E., Branzei R., Tijs S. H., “Monotonicity properties of interval solutions and the Dutta–Ray solution for convex interval games”, Collective decision making: views from social choice and game theory, Theory and Decision Library C, 43, Springer-Verlag, Berlin–Heidelberg, 2010