Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2010_3_a27, author = {Victor V. Rozen}, title = {Equilibrium {Points} in {Games} with {Ordered} {Outcomes}}, journal = {Contributions to game theory and management}, pages = {368--386}, publisher = {mathdoc}, volume = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a27/} }
Victor V. Rozen. Equilibrium Points in Games with Ordered Outcomes. Contributions to game theory and management, Tome 3 (2010), pp. 368-386. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a27/
[1] Vorob`ev N. N., “The present state of game theory”, Uspehi Mat. Nauk, 25:2 (152) (1970), 81–140 (in Russian) | MR | Zbl
[2] Birkhoff G., Lattice theory, Amer. Math. Soc. Coll. Publ., 25, 1967 | Zbl
[3] Shapley L. S., “Equilibrium points in games with vector payoffs”, Naval Res. Logist. Quart., 6:1 (1959), 57–61 | DOI | MR
[4] Rozen V. V., “Mixed extensions of games with ordered outcomes”, Journal Vych. Matem. i Matem. Phis., 16:6 (1976), 1436–1450 (in Russian) | MR | Zbl
[5] Nikaido H., Convex structures and economic theory, Acad. Press, New York–London, 1968 | MR | Zbl
[6] Yanovskaya E. B., “Equilibrium points in games with non-archimedean utilities”, Math. Meth. in social sciences (Vilnius), 4 (1974), 98–118 (in Russian)
[7] Aumann B. J., “Utility theory without completeness axiom: a correction”, Econometrica, 32:1 (1964), 210–212 | DOI | MR | Zbl