Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2010_3_a26, author = {J\"orn Rothe}, title = {Uncertainty {Aversion} and {Equilibrium} in {Normal} {Form} {Games}}, journal = {Contributions to game theory and management}, pages = {342--367}, publisher = {mathdoc}, volume = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a26/} }
Jörn Rothe. Uncertainty Aversion and Equilibrium in Normal Form Games. Contributions to game theory and management, Tome 3 (2010), pp. 342-367. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a26/
[1] Anscombe F. J., Aumann R. J., “A definition of subjective probability”, Annals of Mathematical Statistics, 34 (1963), 199–205 | DOI | MR | Zbl
[2] Aumann R. J., “Subjectivity and correlation in randomized choice”, Journal of Mathematical Economics, 1 (1974), 67–96 | DOI | MR | Zbl
[3] Aumann R. J., Brandenburger A., “Epistemic conditions for Nash equilibrium”, Econometrica, 63 (1995), 1161–1180 | DOI | MR | Zbl
[4] Bernheim D. B., “Rationalizable strategic behavior”, Econometrica, 52 (1984), 1007–1028 | DOI | MR | Zbl
[5] Choquet G., “Theory of capacities”, Annales de l'Institut Fourier (Grenoble), 5 (1953), 131–295 | DOI | MR
[6] Crawford V. P., “Equilibrium without independence”, Journal of Economic Theory, 50 (1990), 127–154 | DOI | MR | Zbl
[7] Dekel E., Safra Z., Segal U., “Existence and dynamic consistency of {N}ash equilibrium with nonexpected utility preferences”, Journal of Economic Theory, 55 (1991), 229–246 | DOI | MR | Zbl
[8] Dow J., Werlang S. R. d. C., “Nash equilibrium under Knightian uncertainty: Breaking down backward induction”, Journal of Economic Theory, 64 (1994), 305–324 | DOI | MR | Zbl
[9] Eichberger J., Kelsey D., Non-additive beliefs and game theory, Discussion Paper 9410, Center for Economic Research, 1994
[10] Eichberger J., Kelsey D., “Uncertainty aversion and preference for randomisation”, Journal of Economic Theory, 71 (1996), 31–43 | DOI | Zbl
[11] Epstein L. G., “Preference, rationalizability and equilibrium”, Journal of Economic Theory, 73 (1997), 1–29 | DOI | MR | Zbl
[12] Epstein L. G., Uncertainty aversion, mimeo, 1997
[13] Ghirardato P., “On independence for non-additive measures, with a Fubini theorem”, Journal of Economic Theory, 73 (1997), 261–291 | DOI | MR | Zbl
[14] Ghirardato P., Marinacci M., Ambiguity made precise: A comparative foundation and some implications, mimeo, University of Toronto, 1997
[15] Gilboa I., Schmeidler D., “Maxmin expected utility with non-unique prior”, Journal of Mathematical Economics, 18 (1989), 141–153 | DOI | MR | Zbl
[16] Haller H. H., Non-additive beliefs in solvable games, mimeo, 1995
[17] Haller H. H., Intrinsic uncertainty in strategic games, mimeo, 1997
[18] Harsanyi J. C., “Games with randomly disturbed payoffs: A new rationale for mixed strategy equilibrium points”, International Journal of Game Theory, 1 (1973), 1–23 | MR | Zbl
[19] Hendon E., Jacobsen H. J., Sloth B., Tranaes T., Nash equilibrium in lower probabilities, mimeo, 1995
[20] Hendon E., Jacobsen H. J., Sloth B., Tranaes T., “The product of capacities and belief functions”, Mathematical Social Sciences, 32 (1996), 95–108 | DOI | MR | Zbl
[21] Klibanoff P., Uncertainty, decision and normal norm games, mimeo, 1993
[22] Kreps D. M., Notes on the Theory of Choice, Westview Press, Boulder, COL, 1988
[23] Kreps D. M., Milgrom P., Roberts J., Wilson R. B., “Rational cooperation in the finitely repeated prisoners' dilemma”, Journal of Economic Theory, 27 (1982), 245–252 | DOI | MR | Zbl
[24] Lo K. C., Nash equilibrium without mutual knowledge of rationality, mimeo, University of Toronto, 1995
[25] Lo K. C., “Equilibrium in beliefs under uncertainty”, Journal of Economic Theory, 71 (1996), 443–484 | DOI | MR | Zbl
[26] Marinacci M., Equilibrium in ambiguous games, mimeo, 1994
[27] Mukerji S., A theory of play for games in strategic form when rationality is not common knowledge, mimeo, 1994
[28] Nash J. F., “Equilibrium points in $n$-person games”, Proceedings of the National Academy of Sciences of the USA, 36 (1950), 48–49 | DOI | MR | Zbl
[29] Pearce D. G., “Rationalizable strategic behavior and the problem of perfection”, Econometrica, 52 (1984), 1029–1050 | DOI | MR | Zbl
[30] Ritzberger K., “On games under expected utility with rank dependent probabilities”, Theory and Decision, 40 (1996), 1–27 | DOI | MR | Zbl
[31] Rothe J., Uncertainty aversion and equilibrium, mimeo, 1996
[32] Rothe J., Uncertainty aversion and equilibrium in extensive form games, mimeo, 1999
[33] Rothe J., Uncertainty aversion and backward induction, mimeo, 1999
[34] Rothe J., “Uncertainty aversion and equilibrium”, Contributions to game theory and management, 2, eds. Petrosjan L. A., Zenkevich N. A., 2009, 363–382 | MR
[35] Ryan M., A refinement of {D}empster–{S}hafer equilibrium, mimeo, University of Auckland, 1997
[36] Samuelson P. A., “Probability, utility, and the independence axiom”, Econometrica, 20 (1952), 670–678 | DOI | MR | Zbl
[37] Savage L. J., The Foundations of Statistics, Wiley, New York, NY, 1954 ; 2nd edn., Dover, 1972 | MR | Zbl | Zbl
[38] Schmeidler D., “Subjective probability and expected utility without additivity”, Econometrica, 57 (1989), 571–587 | DOI | MR | Zbl
[39] Selten R., “Re-examination of the perfectness concept for equilibrium points in extensive games”, International Journal of Game Theory, 4 (1975), 25–55 | DOI | MR | Zbl
[40] Tan T. C.-C., Werlang S. R. d. C., “The Bayesian foundations of solution concepts of games”, Journal of Economic Theory, 45 (1988), 370–391 | DOI | MR | Zbl
[41] von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944 ; 2nd edn., 1947; 3rd edn., 1953 | MR | Zbl