Uncertainty Aversion and Equilibrium in Normal Form Games
Contributions to game theory and management, Tome 3 (2010), pp. 342-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an analysis of games in which rationality is not necessarily mutual knowledge. We argue that a player who faces a non-rational opponent faces genuine uncertainty that is best captured by non-additive beliefs. Optimal strategies can then be derived from assumptions about the rational player's attitude towards uncertainty. This paper investigates the consequences of this view of strategic interaction. We present an equilibrium concept for normal form games, called Choquet–Nash Equilibrium, that formalizes this intuition, and study existence and properties of these equilibria. Our results suggest new robustness concepts for Nash equilibria.
Keywords: rationality, normal form game, uncertainty aversion, Choquet expected utility theory, Nash equilibrium, robustness.
@article{CGTM_2010_3_a26,
     author = {J\"orn Rothe},
     title = {Uncertainty {Aversion} and {Equilibrium} in {Normal} {Form} {Games}},
     journal = {Contributions to game theory and management},
     pages = {342--367},
     publisher = {mathdoc},
     volume = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a26/}
}
TY  - JOUR
AU  - Jörn Rothe
TI  - Uncertainty Aversion and Equilibrium in Normal Form Games
JO  - Contributions to game theory and management
PY  - 2010
SP  - 342
EP  - 367
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a26/
LA  - en
ID  - CGTM_2010_3_a26
ER  - 
%0 Journal Article
%A Jörn Rothe
%T Uncertainty Aversion and Equilibrium in Normal Form Games
%J Contributions to game theory and management
%D 2010
%P 342-367
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2010_3_a26/
%G en
%F CGTM_2010_3_a26
Jörn Rothe. Uncertainty Aversion and Equilibrium in Normal Form Games. Contributions to game theory and management, Tome 3 (2010), pp. 342-367. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a26/

[1] Anscombe F. J., Aumann R. J., “A definition of subjective probability”, Annals of Mathematical Statistics, 34 (1963), 199–205 | DOI | MR | Zbl

[2] Aumann R. J., “Subjectivity and correlation in randomized choice”, Journal of Mathematical Economics, 1 (1974), 67–96 | DOI | MR | Zbl

[3] Aumann R. J., Brandenburger A., “Epistemic conditions for Nash equilibrium”, Econometrica, 63 (1995), 1161–1180 | DOI | MR | Zbl

[4] Bernheim D. B., “Rationalizable strategic behavior”, Econometrica, 52 (1984), 1007–1028 | DOI | MR | Zbl

[5] Choquet G., “Theory of capacities”, Annales de l'Institut Fourier (Grenoble), 5 (1953), 131–295 | DOI | MR

[6] Crawford V. P., “Equilibrium without independence”, Journal of Economic Theory, 50 (1990), 127–154 | DOI | MR | Zbl

[7] Dekel E., Safra Z., Segal U., “Existence and dynamic consistency of {N}ash equilibrium with nonexpected utility preferences”, Journal of Economic Theory, 55 (1991), 229–246 | DOI | MR | Zbl

[8] Dow J., Werlang S. R. d. C., “Nash equilibrium under Knightian uncertainty: Breaking down backward induction”, Journal of Economic Theory, 64 (1994), 305–324 | DOI | MR | Zbl

[9] Eichberger J., Kelsey D., Non-additive beliefs and game theory, Discussion Paper 9410, Center for Economic Research, 1994

[10] Eichberger J., Kelsey D., “Uncertainty aversion and preference for randomisation”, Journal of Economic Theory, 71 (1996), 31–43 | DOI | Zbl

[11] Epstein L. G., “Preference, rationalizability and equilibrium”, Journal of Economic Theory, 73 (1997), 1–29 | DOI | MR | Zbl

[12] Epstein L. G., Uncertainty aversion, mimeo, 1997

[13] Ghirardato P., “On independence for non-additive measures, with a Fubini theorem”, Journal of Economic Theory, 73 (1997), 261–291 | DOI | MR | Zbl

[14] Ghirardato P., Marinacci M., Ambiguity made precise: A comparative foundation and some implications, mimeo, University of Toronto, 1997

[15] Gilboa I., Schmeidler D., “Maxmin expected utility with non-unique prior”, Journal of Mathematical Economics, 18 (1989), 141–153 | DOI | MR | Zbl

[16] Haller H. H., Non-additive beliefs in solvable games, mimeo, 1995

[17] Haller H. H., Intrinsic uncertainty in strategic games, mimeo, 1997

[18] Harsanyi J. C., “Games with randomly disturbed payoffs: A new rationale for mixed strategy equilibrium points”, International Journal of Game Theory, 1 (1973), 1–23 | MR | Zbl

[19] Hendon E., Jacobsen H. J., Sloth B., Tranaes T., Nash equilibrium in lower probabilities, mimeo, 1995

[20] Hendon E., Jacobsen H. J., Sloth B., Tranaes T., “The product of capacities and belief functions”, Mathematical Social Sciences, 32 (1996), 95–108 | DOI | MR | Zbl

[21] Klibanoff P., Uncertainty, decision and normal norm games, mimeo, 1993

[22] Kreps D. M., Notes on the Theory of Choice, Westview Press, Boulder, COL, 1988

[23] Kreps D. M., Milgrom P., Roberts J., Wilson R. B., “Rational cooperation in the finitely repeated prisoners' dilemma”, Journal of Economic Theory, 27 (1982), 245–252 | DOI | MR | Zbl

[24] Lo K. C., Nash equilibrium without mutual knowledge of rationality, mimeo, University of Toronto, 1995

[25] Lo K. C., “Equilibrium in beliefs under uncertainty”, Journal of Economic Theory, 71 (1996), 443–484 | DOI | MR | Zbl

[26] Marinacci M., Equilibrium in ambiguous games, mimeo, 1994

[27] Mukerji S., A theory of play for games in strategic form when rationality is not common knowledge, mimeo, 1994

[28] Nash J. F., “Equilibrium points in $n$-person games”, Proceedings of the National Academy of Sciences of the USA, 36 (1950), 48–49 | DOI | MR | Zbl

[29] Pearce D. G., “Rationalizable strategic behavior and the problem of perfection”, Econometrica, 52 (1984), 1029–1050 | DOI | MR | Zbl

[30] Ritzberger K., “On games under expected utility with rank dependent probabilities”, Theory and Decision, 40 (1996), 1–27 | DOI | MR | Zbl

[31] Rothe J., Uncertainty aversion and equilibrium, mimeo, 1996

[32] Rothe J., Uncertainty aversion and equilibrium in extensive form games, mimeo, 1999

[33] Rothe J., Uncertainty aversion and backward induction, mimeo, 1999

[34] Rothe J., “Uncertainty aversion and equilibrium”, Contributions to game theory and management, 2, eds. Petrosjan L. A., Zenkevich N. A., 2009, 363–382 | MR

[35] Ryan M., A refinement of {D}empster–{S}hafer equilibrium, mimeo, University of Auckland, 1997

[36] Samuelson P. A., “Probability, utility, and the independence axiom”, Econometrica, 20 (1952), 670–678 | DOI | MR | Zbl

[37] Savage L. J., The Foundations of Statistics, Wiley, New York, NY, 1954 ; 2nd edn., Dover, 1972 | MR | Zbl | Zbl

[38] Schmeidler D., “Subjective probability and expected utility without additivity”, Econometrica, 57 (1989), 571–587 | DOI | MR | Zbl

[39] Selten R., “Re-examination of the perfectness concept for equilibrium points in extensive games”, International Journal of Game Theory, 4 (1975), 25–55 | DOI | MR | Zbl

[40] Tan T. C.-C., Werlang S. R. d. C., “The Bayesian foundations of solution concepts of games”, Journal of Economic Theory, 45 (1988), 370–391 | DOI | MR | Zbl

[41] von Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944 ; 2nd edn., 1947; 3rd edn., 1953 | MR | Zbl