On the Metric Approach in the Theory of Matrix Games
Contributions to game theory and management, Tome 3 (2010), pp. 22-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is considered the problem connected with the combinatorial metric approach to the notion of solution of matrix games. According to this approach it is searched a matrix $B$ that possesses equilibrium and is the closest to the given matrix $A$ in the sense of some metric $d(A, B).$ In the case when $d(A,B)$ is the number of pairs $(i,j)$ such that $a_{ij} \neq b_{ij}$ it is established some properties of the quantity $\max_A\min_B d(A,B)$.
Keywords: metrics, combinatorial approach.
Mots-clés : matrix game, equilibrium situation
@article{CGTM_2010_3_a2,
     author = {{\CYRA}bdulla A. Azamov},
     title = {On the {Metric} {Approach} in the {Theory} of {Matrix} {Games}},
     journal = {Contributions to game theory and management},
     pages = {22--28},
     year = {2010},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a2/}
}
TY  - JOUR
AU  - Аbdulla A. Azamov
TI  - On the Metric Approach in the Theory of Matrix Games
JO  - Contributions to game theory and management
PY  - 2010
SP  - 22
EP  - 28
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a2/
LA  - en
ID  - CGTM_2010_3_a2
ER  - 
%0 Journal Article
%A Аbdulla A. Azamov
%T On the Metric Approach in the Theory of Matrix Games
%J Contributions to game theory and management
%D 2010
%P 22-28
%V 3
%U http://geodesic.mathdoc.fr/item/CGTM_2010_3_a2/
%G en
%F CGTM_2010_3_a2
Аbdulla A. Azamov. On the Metric Approach in the Theory of Matrix Games. Contributions to game theory and management, Tome 3 (2010), pp. 22-28. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a2/

[1] Neumann J., Morgenstern O., Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944 | MR | Zbl

[2] Karlin S., Mathematical Methods and Theory in Games, Programming and Economics, v. 1, Matrix Games, Programming and Mathematical Economics, Addison-Wesley, Reading–London, 1959, 433 pp. | MR

[3] Vorobyov N. N., “A Morden Game Theory”, Successes of Mathematical Sciences, 15:2 (1970), 80–140 (in Russian)

[4] Petrosyan L. A., Zenkevich N. A., Game Theory, World Scientific Publishing Co. Pte. Ltd., Singapore, 1996 (in Russian) | MR | Zbl

[5] Prasad K., “Observation, Measurement, and Computation in Finite Games”, International Journal of Game Theory, 32:4 (2004), 455–470 | DOI | MR | Zbl

[6] Azamov A., “On a combinatorial problem of matrix game theory”, Actual Problems of Control Theory and Mathematical modelling, Collected works, Fan, Tashkent, 1998, 4–8 (in Russian)

[7] Azamov A., “Combinatorial Approach to Theory of Matrix Games”, Uzbek Mathematical Journal, 2 (2004), 12–16 | MR

[8] Luce R. D., Raiffa H., Games and decisions, Foreign literature, M., 1961 | MR