Fuzzy Conflict Games in Economics and Management: single objective fuzzy bi-matrix games
Contributions to game theory and management, Tome 3 (2010), pp. 192-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the real game situations, the possible values of parameters are imprecisely known to the experts, all data of the game are not exactly known to the players, and information is often lacking. Imprecision on the environment, preferences, payoffs and moves of other players, may be of different types, but not only the probabilistic type of the Bayesian games. In the probabilistic approaches of uncertainty, events or statements are assumed to be well defined. On the contrary, the Zadeh's fuzziness concept extends the imprecision or vagueness appreciations to that events and statements. The theory of fuzzy sets has been extensively applied to a variety of domains in soft computing, modeling and decision making. This contribution introduces these attractive techniques with numerical applications to economic single-objective bi-matrix games. The computations are carried out using the software $MATHEMATICA^\circledR 7.0.1$.
Keywords: fuzzy logic game; fuzzy linear/quadratic programming problem; extension principle; function principle.
@article{CGTM_2010_3_a16,
     author = {Andr\'e A. Keller},
     title = {Fuzzy {Conflict} {Games} in {Economics} and {Management:} single objective fuzzy bi-matrix games},
     journal = {Contributions to game theory and management},
     pages = {192--219},
     publisher = {mathdoc},
     volume = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a16/}
}
TY  - JOUR
AU  - André A. Keller
TI  - Fuzzy Conflict Games in Economics and Management: single objective fuzzy bi-matrix games
JO  - Contributions to game theory and management
PY  - 2010
SP  - 192
EP  - 219
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a16/
LA  - en
ID  - CGTM_2010_3_a16
ER  - 
%0 Journal Article
%A André A. Keller
%T Fuzzy Conflict Games in Economics and Management: single objective fuzzy bi-matrix games
%J Contributions to game theory and management
%D 2010
%P 192-219
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2010_3_a16/
%G en
%F CGTM_2010_3_a16
André A. Keller. Fuzzy Conflict Games in Economics and Management: single objective fuzzy bi-matrix games. Contributions to game theory and management, Tome 3 (2010), pp. 192-219. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a16/

[1] Aubin J. P., Mathematical methods of Game and Economic Theory, revised edition, Dover Publications, Mineola, N.Y., 1979 | MR

[2] Aubin J. P., “Cooperative fuzzy games”, Math. Oper. Res., 6:1 (1981), 1–13 | DOI | MR | Zbl

[3] Azrieli, Lehrer E., Int. J. Game Theory, 36 (2007), 1–15 | DOI | MR | Zbl

[4] Bector C. R., Chandra S., Fuzzy Mathematical Programming and Fuzzy Matrix Games, Springer, Berlin–Heidelberg–New York, 2005 | Zbl

[5] Bellman R. E., Zadeh L. A., “Decision-making in a fuzzy environment”, Management Sci. B, 17 (1970), 141–164 | MR

[6] Billot A., Economic Theory of Fuzzy Equilibria: An Axiomatic Analysis, Springer-Verlag, Berlin–Heidelberg–New York, 1992 | MR | Zbl

[7] Butnariu D., “Fuzzy games: a description of the concept”, Fuzzy Sets Syst., 1 (1978), 181–192 | DOI | MR | Zbl

[8] Campos L., “Fuzzy linear programming models to solve fuzzy matrix games”, Fuzzy Sets Syst., 11 (1989), 243–251 | MR

[9] Canty M. J., Resolving Conflicts with Mathematica: Algorithms for two-person games, Academic Press, Amsterdam–Boston–Heidelberg–London–New York, 2003

[10] Chanas S., “The use of parametric programming in fuzzy linear programming”, Fuzzy Sets Syst., 1 (1978), 181–192 | DOI

[11] Chen Y. W., “An alternative approach to the bimatrix non-cooperative game with fuzzy multipleobjectives”, J. Chin. Inst. Ind. Eng., 19:5 (2002), 9–16 | DOI

[12] Chen Y. W., Larbani M., “Two-person zero-sum game approach for fuzzy multiple attribute decision making”, Fuzzy Sets Syst., 157:1 (2006), 34–51 | DOI | MR | Zbl

[13] Chen S.-H., Wang C.-C., Ramer A., “Backorder fuzzy inventory model under function principle”, Inform. Sci., 95 (1996), 71–79 | DOI

[14] Chen Y. W., Wang C. C., Chang S. M., “Fuzzy economic production quantity model for items with imperfect quality”, Int. J. Innovative Comput. Inform. Control, 3:1 (2007), 85–95

[15] Cook W. D., “Zero-sum games with multiple goals”, Nav. Res. Log. Q., 23 (1976), 615–622 | DOI | MR

[16] Delgado M., Verdegay J. J., Vila M. A., “A general model for fuzzy linear programming”, Fuzzy Sets Syst., 1989, 21–29 | DOI | MR | Zbl

[17] Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York–London–Toronto, 1980 | MR | Zbl

[18] Engwerda J. C., LQ Dynamic Optimization and Differential Games, John Wiley Sons, Chichester, UK, 2005

[19] Greenhut J. G., Greenhut M. L., Mansur Y., “Oligopoly and behavioral uncertainty: an application of fuzzy set theory”, Rev. Ind. Organ., 10 (1995), 269–288 | DOI

[20] Hwang Y.-A., “Fuzzy games: a characterization of the core”, Fuzzy Sets Syst., 158:4 (2007), 2480–2493 | DOI | MR

[21] Garagic D., Cruz J. B., “An approach to fuzzy non-cooperative Nash games”, J. Optim. Theory and Appl., 118 (2003), 475–491 | DOI | MR | Zbl

[22] Kacher F., Larbani M., “Existence of equilibrium solution for a noncooperative game with fuzzy goals and parameters”, Fuzzy Sets and Syst., 159:2 (2008), 164–176 | DOI | MR | Zbl

[23] Keller A. A., “Fuzzy multiobjective optimization modeling with Mathematica”, WSEAS Trans. Syst., 8:3 (2009), 368–378

[24] Keller A. A., “Fuzzy multiobjective bi-matrix game: introduction to the computational techniques”, Proc. 9th WSEAS International Conference on System Theory and Scientific Computation (August 20–22, Moscow), WSEAS Press, 2009, 148–156

[25] Kim W. K., Lee K. L., “Generalized fuzzy games and fuzzy equilibria”, Fuzzy Sets Syst., 122:3 (2001), 293–301 | DOI | MR | Zbl

[26] Klir G. J., Yuan B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, Upper Saddle River, N.J., 1995 | MR | Zbl

[27] Lai Y.-J., Hwang C.-L., Fuzzy Mathematical Programming: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 394, Springer-Verlag, Berlin–Heidelberg, 1992 | DOI | MR | Zbl

[28] Lai Y.-J., Hwang C.-L., Fuzzy Multiple Objective Decision Making: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 404, Springer-Verlag, Berlin–Heidelberg, 1994 | DOI | MR | Zbl

[29] Lee H.-M., Yao J. S., “Economic production quantity for fuzzy demand quantity and fuzzy production quantity”, Eur. J. Oper. Res., 109 (1998), 203–211 | DOI | Zbl

[30] Lemke C. E., Howson J. T. (Jr.), “Equilibrium points of bimatrix games”, J. Soc. Ind. Appl. Math., 12 (1964), 413–423 | DOI | MR | Zbl

[31] Lin D.-C., Yao J.-S., “Fuzzy economic production for production inventory”, Fuzzy Sets Syst., 111 (2000), 465–495 | DOI | MR | Zbl

[32] Mangasarian O. L., Stone H., “Two person non zero sum games and quadratic programming”, J. Math. Anal. Appl., 9 (1964), 348–355 | DOI | MR | Zbl

[33] Mareš M., Computation over Fuzzy Quantities, CRC Press, Boca Raton–Ann Arbor–London–Tokyo, 1994 | MR

[34] Mareš M., Fuzzy Cooperative Games: Cooperation with Vague Expectations, Physica-Verlag, Heidelberg–New York, 2001 | MR

[35] Molina M., Tejada J., “Linear production games with fuzzy control”, Fuzzy Sets Syst., 157 (2006), 1362–1383 | DOI | MR | Zbl

[36] Negoitǎ C. V., Ralescu D. A., Applications of Fuzzy Sets to Systems Analysis, Birkhäuser Verlag, Basel–Stuttgart, 1975 | MR | Zbl

[37] Nguyen H. T., Walker E. A., A First Course in Fuzzy logic, third edition, Chapman Hall/CRC, Boca Raton–London–New York, 2006 | MR

[38] Nishizaki I., Sakawa M., “Equilibrium solutions in multiobjective bimatrix games with fuzzy payoffs and fuzzy goals”, Fuzzy Sets Syst., 111 (2000), 99–116 | DOI | MR | Zbl

[39] Nishizaki I., Sakawa M., “Fuzzy cooperative games arising from linear production programming problems with fuzzy parameters”, Fuzzy Sets Syst., 114 (2000), 11–21 | DOI | Zbl

[40] Nishizaki I., Sakawa M., “Solutions based on fuzzy goals in fuzzy linear Programming Games”, Fuzzy Sets Syst., 115 (2000), 105–119 | DOI | MR | Zbl

[41] Nishizaki I., Sakawa M., Fuzzy and Multiobjective Games for Conflict Resolution, Physica-Verlag, Heidelberg–New York, 2001 | MR

[42] Owen G., “On the core of linear production games”, Mathematical Programming, 115 (1975), 105–119 | MR

[43] Park K. S., “Fuzzy set theoretic interpretation of economic order quantity”, IEEE Trans. Syst. Man Cybern., 17 (1987), 1082–1084 | DOI

[44] Sakawa M., Large Scale Interactive Fuzzy Multiobjective Programming: decomposition approaches, Physica-Verlag, Heidelberg–New York, 2000 | Zbl

[45] Shimizu K., Aiyoshi E., “Necessary conditions for min-max problems and algorithms by a relaxation procedure”, IEEE Trans. Autom. Control, AC, 25:1 (1980), 62–66 | DOI | MR | Zbl

[46] van de Panne C., “Programming with a quadratic constraint”, Management Sci., 12:1 (1966), 798–815 | MR | Zbl

[47] Vodyottama V., Chandra S., Bector C. R., “Bimatrix games with fuzzy goals and fuzzy payoffs”, Fuzzy Optim. Decis. Ma., 3 (2004), 327–344 | DOI | MR

[48] de Wilde, “Fuzzy utility and equilibria”, IEEE Trans. Syst. Man Cybern. B, 34:4 (2004), 1774–1785 | DOI

[49] Yao J. S., Lee H.-M., “Fuzzy inventory with backorder for fuzzy order quantity”, Inform. Sci., 93 (1996), 283–319 | DOI | Zbl

[50] Zadeh L. A., Fu K.-S., Tanaka K., Shimura M., Fuzzy Sets and Their Applications to Cognitive and decision Processes, Academic Press, New York–San Francisco–London, 1975 | MR

[51] Zimmermann H.-J., “Fuzzy programming with several objective functions”, Fuzzy Sets Syst., 1 (1978), 45–55 | DOI | MR | Zbl

[52] Zimmermann H.-J., Fuzzy Set Theory and Its Applications, fourth edition, Kluwer Academic Publishers, Boston–Dordrecht–London, 2001 | MR