Quantum Nash-Equilibrium and Linear Representations of Ortholattices
Contributions to game theory and management, Tome 3 (2010), pp. 132-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural connection between antagonistic matrix games and ortholattices (quantum logics) is established. It is shown that the equilibrium in the corresponding quantum game defines the operator representation of the quantum logic. The conditions of the quantum equilibrium are formulated.
Keywords: quantum equilibrium, ortholattices, linear representations.
@article{CGTM_2010_3_a11,
     author = {Andrei A. Grib and Georgy N. Parfionov},
     title = {Quantum {Nash-Equilibrium} and {Linear} {Representations} of {Ortholattices}},
     journal = {Contributions to game theory and management},
     pages = {132--143},
     publisher = {mathdoc},
     volume = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a11/}
}
TY  - JOUR
AU  - Andrei A. Grib
AU  - Georgy N. Parfionov
TI  - Quantum Nash-Equilibrium and Linear Representations of Ortholattices
JO  - Contributions to game theory and management
PY  - 2010
SP  - 132
EP  - 143
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a11/
LA  - en
ID  - CGTM_2010_3_a11
ER  - 
%0 Journal Article
%A Andrei A. Grib
%A Georgy N. Parfionov
%T Quantum Nash-Equilibrium and Linear Representations of Ortholattices
%J Contributions to game theory and management
%D 2010
%P 132-143
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2010_3_a11/
%G en
%F CGTM_2010_3_a11
Andrei A. Grib; Georgy N. Parfionov. Quantum Nash-Equilibrium and Linear Representations of Ortholattices. Contributions to game theory and management, Tome 3 (2010), pp. 132-143. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a11/

[1] Meyer D. A., “Quantum strategies”, Physical Review Letters, 82 (1999), 1052 | DOI | MR | Zbl

[2] Eisert J., Wilkens M., Lewenstein M., “Quantum games and quantum strategies”, Physical Review Letters, 83 (1999), 3077 | DOI | MR | Zbl

[3] Marinatto L., Weber T., “A quantum approach to static games of complete information”, Physics Letters A, 272 (2000), 291 | DOI | MR | Zbl

[4] Iqbal A., Tour A. H., “Quantum mechanics gives stability to a Nash equilibrium”, Physical Review A, 65, 022306 | DOI | MR

[5] Cheon T., “Altruistic contents of quantum prisoner's dilemma”, Europhysics Letters, 69 (2005), 149 | DOI

[6] Iqbal A., Cheon T., Abbott D., “Probabilistic analysis of three-player symmetric quantum games played using the Einstein–Podolsky–Rosen–Bohm setting”, Physics Letters A, 372 (2008), 6564 | DOI | MR | Zbl

[7] Flitney A., Abbott D., “Quantum version of the Monty Hall problem”, Physical Review A, 65 (2002), 062318 | DOI

[8] Flitney A., Abbott D., “Quantum Parrondo's Games”, Physica A, 314 (2002), 35 | DOI | MR | Zbl

[9] Flitney A., Abbott D., “An introduction to quantum game theory”, Fluct. Noise Lett., 2 (2002), 175 | DOI | MR

[10] Piotrowski E. W., Sładkowski J., “An invitation to quantum game theory”, International Journal of Theoretical Physics, 42 (2003), 1089 | DOI | MR | Zbl

[11] Piotrowski E. W., Sładkowski J., Syska J., “Interference of quantum market strategies”, Physica A, 318 (2003), 516 | DOI | MR | Zbl

[12] Du Jiangfeng, Li Hui, Xu Xiaodong, “Experimental realization of quantum games on a quantum computer”, Physics Review Letter, 88 (2002), 137902 | DOI

[13] Grib A. A., Parfionov G. N., Can a game be quantum?, Journal of Mathematical Science, 125:2 (2005), 173–184 | DOI | MR

[14] Grib A. A., Parfionov G. N., When the macroscopic game is a quantum game?, 2005, arXiv: quant-ph/0502038

[15] Grib A. A., Khrennikov A. Yu., Parfionov G. N., Starkov K. A., “Quantum quilibria for macroscopic systems”, Journ. of Phys. A: Mathematical and General, 39 (2006), 8461–8475 | DOI | MR | Zbl

[16] Franeva L. K., Grib A. A., Parfionov G. N., “Quantum games of macroscopic partners”, Proceedings of International conference on game theory and management (St. Petersburg, Russia, June 28–29, 2007)

[17] Grib A. A., Parfionov G. N., “How to play macroscopic quantum game”, Proceedings of International conference on game theory and management (St. Petersburg, Russia, June 26–27, 2008), 2008 | MR

[18] Parfionov G., Multiple Nash-equilibrium in Quantum Game, 2008, arXiv: 0806.1102

[19] Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information, Cambrige, England, 2000 | MR

[20] Svozil K., Contexts in quantum, classical and partition logic, arXiv: quant-ph/0609209 | MR

[21] Dalla Chiara M. L., Giuntini R., Leporini R., Quantum Computational Logics. A Survey, 2003, arXiv: quant-ph/0305029 | MR