Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2010_3_a11, author = {Andrei A. Grib and Georgy N. Parfionov}, title = {Quantum {Nash-Equilibrium} and {Linear} {Representations} of {Ortholattices}}, journal = {Contributions to game theory and management}, pages = {132--143}, publisher = {mathdoc}, volume = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2010_3_a11/} }
TY - JOUR AU - Andrei A. Grib AU - Georgy N. Parfionov TI - Quantum Nash-Equilibrium and Linear Representations of Ortholattices JO - Contributions to game theory and management PY - 2010 SP - 132 EP - 143 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2010_3_a11/ LA - en ID - CGTM_2010_3_a11 ER -
Andrei A. Grib; Georgy N. Parfionov. Quantum Nash-Equilibrium and Linear Representations of Ortholattices. Contributions to game theory and management, Tome 3 (2010), pp. 132-143. http://geodesic.mathdoc.fr/item/CGTM_2010_3_a11/
[1] Meyer D. A., “Quantum strategies”, Physical Review Letters, 82 (1999), 1052 | DOI | MR | Zbl
[2] Eisert J., Wilkens M., Lewenstein M., “Quantum games and quantum strategies”, Physical Review Letters, 83 (1999), 3077 | DOI | MR | Zbl
[3] Marinatto L., Weber T., “A quantum approach to static games of complete information”, Physics Letters A, 272 (2000), 291 | DOI | MR | Zbl
[4] Iqbal A., Tour A. H., “Quantum mechanics gives stability to a Nash equilibrium”, Physical Review A, 65, 022306 | DOI | MR
[5] Cheon T., “Altruistic contents of quantum prisoner's dilemma”, Europhysics Letters, 69 (2005), 149 | DOI
[6] Iqbal A., Cheon T., Abbott D., “Probabilistic analysis of three-player symmetric quantum games played using the Einstein–Podolsky–Rosen–Bohm setting”, Physics Letters A, 372 (2008), 6564 | DOI | MR | Zbl
[7] Flitney A., Abbott D., “Quantum version of the Monty Hall problem”, Physical Review A, 65 (2002), 062318 | DOI
[8] Flitney A., Abbott D., “Quantum Parrondo's Games”, Physica A, 314 (2002), 35 | DOI | MR | Zbl
[9] Flitney A., Abbott D., “An introduction to quantum game theory”, Fluct. Noise Lett., 2 (2002), 175 | DOI | MR
[10] Piotrowski E. W., Sładkowski J., “An invitation to quantum game theory”, International Journal of Theoretical Physics, 42 (2003), 1089 | DOI | MR | Zbl
[11] Piotrowski E. W., Sładkowski J., Syska J., “Interference of quantum market strategies”, Physica A, 318 (2003), 516 | DOI | MR | Zbl
[12] Du Jiangfeng, Li Hui, Xu Xiaodong, “Experimental realization of quantum games on a quantum computer”, Physics Review Letter, 88 (2002), 137902 | DOI
[13] Grib A. A., Parfionov G. N., Can a game be quantum?, Journal of Mathematical Science, 125:2 (2005), 173–184 | DOI | MR
[14] Grib A. A., Parfionov G. N., When the macroscopic game is a quantum game?, 2005, arXiv: quant-ph/0502038
[15] Grib A. A., Khrennikov A. Yu., Parfionov G. N., Starkov K. A., “Quantum quilibria for macroscopic systems”, Journ. of Phys. A: Mathematical and General, 39 (2006), 8461–8475 | DOI | MR | Zbl
[16] Franeva L. K., Grib A. A., Parfionov G. N., “Quantum games of macroscopic partners”, Proceedings of International conference on game theory and management (St. Petersburg, Russia, June 28–29, 2007)
[17] Grib A. A., Parfionov G. N., “How to play macroscopic quantum game”, Proceedings of International conference on game theory and management (St. Petersburg, Russia, June 26–27, 2008), 2008 | MR
[18] Parfionov G., Multiple Nash-equilibrium in Quantum Game, 2008, arXiv: 0806.1102
[19] Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information, Cambrige, England, 2000 | MR
[20] Svozil K., Contexts in quantum, classical and partition logic, arXiv: quant-ph/0609209 | MR
[21] Dalla Chiara M. L., Giuntini R., Leporini R., Quantum Computational Logics. A Survey, 2003, arXiv: quant-ph/0305029 | MR