Tracing the Modern Concept of Convexity
Contributions to game theory and management, Tome 2 (2009), pp. 45-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several manifestations of convexity were studied already in the antiquity. The modern concept emerged, however, only around 1900, notably in the works of Peano and Minkowski. This motivates us to review here some main contributions of the latter. In doing so, we attempt to offer a friendly invitation to the history and concepts of convex analysis. Our emphasis is on convex bodies, extreme points, separation, Minkowski functionals, supports and polarity.
@article{CGTM_2009_2_a4,
     author = {Sjur D. Fl\r{a}m and Gabriele H. Greco},
     title = {Tracing the {Modern} {Concept} of {Convexity}},
     journal = {Contributions to game theory and management},
     pages = {45--62},
     publisher = {mathdoc},
     volume = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2009_2_a4/}
}
TY  - JOUR
AU  - Sjur D. Flåm
AU  - Gabriele H. Greco
TI  - Tracing the Modern Concept of Convexity
JO  - Contributions to game theory and management
PY  - 2009
SP  - 45
EP  - 62
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2009_2_a4/
LA  - en
ID  - CGTM_2009_2_a4
ER  - 
%0 Journal Article
%A Sjur D. Flåm
%A Gabriele H. Greco
%T Tracing the Modern Concept of Convexity
%J Contributions to game theory and management
%D 2009
%P 45-62
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2009_2_a4/
%G en
%F CGTM_2009_2_a4
Sjur D. Flåm; Gabriele H. Greco. Tracing the Modern Concept of Convexity. Contributions to game theory and management, Tome 2 (2009), pp. 45-62. http://geodesic.mathdoc.fr/item/CGTM_2009_2_a4/

[1] Ascoli G., “Sugli spazi lineari metrici e le loro varieta”, Ann. Mat. Pura Appl., 4 (1932), 33–81 ; 10, 203–232 | DOI | MR | DOI | MR

[2] Aubin J.-P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990 | MR | Zbl

[3] Bachem A., “Convexity and optimizaion in discrete structures”, in [28], 1983, 9–29 | MR | Zbl

[4] Bazaraa M. S., Shetty C. M., Nonlinear Programming, J. Wiley, New York, 1979 | MR | Zbl

[5] Bonnesen T., Fenchel W., Theorie der konvexen Körper, Springer, Berlin, 1934 | Zbl

[6] Borwein J. M., Lewis A. L., Convex Analysis and Nonlinear Optimization, CMS Books in Mathematics, Springer, Berlin, 2000 | MR

[7] Borwein J. M., “Adjoint process duality”, Mathematics of Operations Research, 8 (1983), 403–434 | DOI | MR | Zbl

[8] Brunn H., “Sätze uber zwei getrennte Eikörper”, Mathematische Annalen, 104 (1931), 300–324 | DOI | MR | Zbl

[9] Bulgakov M., The Fatal Eggs, Hesperus Ltd. Press, London, 2003

[10] Chvátal V., Linear Programming, Freeman, New York, 1983 | MR | Zbl

[11] Clarke F. H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983 | MR | Zbl

[12] Clarke F. H., Ledyaev Y. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Springer-Verlag, Berlin, 1998 | MR

[13] Cournot A., Reserches sur les principes mathématiques de la théorie des richesses, Paris, 1838

[14] Debreu G., Theory of Value, Wiley, New York, 1959 | MR | Zbl

[15] Dieudonné J., The History of Functional Analysis, North-Holland Math. Stud., 49, Amsterdam, 1981 | MR | Zbl

[16] De Giuli M. E., Giorgi G., Magnani U., “255 theorems of the alternative for linear systems: how to get all them quickly”, Convessità e Calcolo Parallelo, eds. G. Giorgi, F. A. Rossi, Libreria Universitaria Editrice, Verona, 1997

[17] Diewert W. E., “Duality approaches to microeconomic theory”, Handbook of Mathematical Economics, Chap. 12, v. II, eds. K. J. Arrow, M. D. Intrilligator, North-Holland, Amsterdam, 1981

[18] Duffie D., Dynamic Asset Pricing Theory, Princeton University Press, 1992

[19] Ellerman D. P., “Arbitrage theory: a mathematical introduction”, SIAM Review, 26:2 (1984), 241–261 | DOI | MR | Zbl

[20] Encyklopädie der Mathematischen Wissenschaften, Teubner, Leipzig, 1898–1904

[21] Ewald G., Combinatorial Convexity and Algebraic Geometry, Springer, Berlin, 1996 | MR | Zbl

[22] Farkas J., “Über die Theorie der einfachen Ungleichungen”, J. Reine und Angewandte Math., 124 (1902), 1–24

[23] Fenchel W., “On conjugate convex functions”, Canadian Journal of Mathematics, 1 (1949), 73–77 | DOI | MR | Zbl

[24] Fenchel W., Convex Cones, Sets and Functions, Lecture Notes, Princeton University, 1951

[25] Fenchel W., “Convexity through the ages”, in [28], 1983, 120–130 | MR | Zbl

[26] Giaquinta M., Hildebrandt S., Calculus of Variations, v. I, Springer, Berlin, 1996

[27] Gordan P., “Über die Auflösung linearer Gleichungen mit reelen Coefficienten”, Mathematische Annalen, 6 (1873), 23–28 | DOI | MR

[28] Gruber P. M., Wills J. M. (eds.), Convexity and its Applications, Birkhäuser, 1983 | MR | Zbl

[29] Grünbaum B., Convex Polytopes, J. Wiley, New York, 1967 | MR | Zbl

[30] Hartshorne R., Geometry: Euclid and Beyond, Springer, Berlin, 1997 | MR

[31] Hancock H., Development of the Minkowski Geometry of Numbers, Macmillan Company, New York, 1939; Dover Publ., New York, 1964

[32] Hilbert D., Minkowski H., Gedächtnisrede, Göttingen, in [44], 1911

[33] Hiriart-Urruty J.-B., Lemaréchal C., Convex Analysis and Minimization Algorithms, Springer, Berlin, 1993

[34] Holmes R. B., Geometric Functional Analysis and its Applications, Springer, Berlin, 1975 | MR | Zbl

[35] Hörmander L., Notions of Convexity, Birkhäuser, Basel, 1994 | MR | Zbl

[36] Jensen J. L. W., “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”, Acta Math., 30 (1906), 175–193 | DOI | MR | Zbl

[37] Klee V. L., “Extremal structures on convex sets, I”, Arch. Math., 8 (1958), 234–240 | DOI | MR

[38] Krein M., Milman D., “On extreme points of regularly convex sets”, Studia Math., 9 (1940), 133–138 | MR

[39] Köthe G., Topological Vector Spaces, v. I, Springer, Berlin, 1969 | MR | Zbl

[40] Lassonde M., “Hahn-Banach theorems for convex functions”, Minimax Theory and Applications, eds. B. Ricceri, S. Simons, Kluwer Acad. Publishers, Dordrecht, 1988, 135–145 | MR

[41] Mazur S., “Über konvexe Mengen in lineare normierte Raüme”, Studia Math., 4 (1933), 70–84

[42] Michel P., Penot J.-P., “Calcul sous-différentiel pour les fonctions lipschitziennes et non lipschitziennes”, C. R. Acad. des Science de Paris, 298 (1984), 269–272 | MR | Zbl

[43] Minkowski H., Geometrie der Zahlen, Teubner, Leipzig, 1896 ; Chelsea Publishing Company, New York, 1953 | Zbl | Zbl

[44] Minkowski H., Gesammelte Abhandlungen, Teubner, Leipzig, 1911 ; Chelsea Publishing Company, New York, 1967 | Zbl

[45] Minkowski H., Diophantische Approximationen. Eine Einfuhrung in die Zahlentheorie, Teubner, Leipzig, 1927

[46] Minkowski H., Briefe and David Hilbert, Springer, Berlin, 1970

[47] Motzkin T., Beiträge zur Theorie der linearen Ungleichungen, Azriel, Jerusalem, 1936

[48] Nash J., “Noncooperative games”, Annals of Mathematics, 54 (1951), 286–295 | DOI | MR | Zbl

[49] Phelps R. R., Lectures on Choquet's Theorem, Lecture Notes in Mathematics, 1757, Springer, Berlin, 2001 | DOI | MR | Zbl

[50] Ribenboim P., Classical Theory of Algebraic Numbers, Springer, Berlin, 2001 | MR | Zbl

[51] Reid C., Hilbert, Springer, Berlin, 1962 | MR

[52] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, N. J., 1970 | MR

[53] Rockafellar R. T., Wets R. J-B., Variational Analysis, Springer, Berlin, 1998 | MR | Zbl

[54] Schrijver A., Combinatorial Optimization, Springer, Berlin, 2003

[55] Smith A., The Wealth of Nations, 1776

[56] Tikhomirov V. M., “Convex Analysis”, Analysis, v. II, Enc. Math. Sciences, 14, ed. R. V. Gamkrelidze, Springer, Berlin, 1980

[57] von Neumann J., “Zur Theorie der Gesellschaftsspiele”, Mathematische Annalen, 100 (1928), 295–300 | DOI | MR

[58] von Neumann J., “Communication on the Borel notes”, Econometrica, 21 (1953), 124–125 | DOI | MR

[59] Valentine F., Convex Sets, McGraw-Hill, New York, 1964 | MR | Zbl

[60] Ville J., “Sur la théorie générale des jeux ou intervient l'habilité des joueurs”, v. 2, Traite du calcul des probabilités et de ses applications, IV, eds. E. Borel et al., Gautiers-Villars, Paris, 1938

[61] Weyl H., “Elementare Theorie der konvexen Polyeder”, Commentarii Math. Helvetici, 7 (1935), 290–306 | DOI | MR