Uncertainty Aversion and Equilibrium
Contributions to game theory and management, Tome 2 (2009), pp. 363-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

If rationality is not mutual knowledge in a game then standard expected utility theory requires a rational player to have a specific belief about the behaviour of a non-rational opponent. This paper argues that this problem does not arise under Choquet expected utility theory, which does not require a player's beliefs to be additive. Non-additive beliefs allow the formalization of the idea that a player who faces a non-rational opponent faces genuine uncertainty. Optimal strategies can then be derived from assumptions about the rational player's attitude towards uncertainty. This paper investigates the consequences of such a view of strategic interaction. We formulate equilibrium concepts, called Choquet–Nash equilibrium in normal forms and perfect Choquet equilibrium in extensive forms, that solves the infinite regress that arises in this situation and study existence and properties of these equilibria in normal and extensive form games.
Keywords: extensive form games, equilibrium, non-additive beliefs, uncertainty aversion.
@article{CGTM_2009_2_a29,
     author = {J\"orn Rothe},
     title = {Uncertainty {Aversion} and {Equilibrium}},
     journal = {Contributions to game theory and management},
     pages = {363--382},
     publisher = {mathdoc},
     volume = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2009_2_a29/}
}
TY  - JOUR
AU  - Jörn Rothe
TI  - Uncertainty Aversion and Equilibrium
JO  - Contributions to game theory and management
PY  - 2009
SP  - 363
EP  - 382
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2009_2_a29/
LA  - en
ID  - CGTM_2009_2_a29
ER  - 
%0 Journal Article
%A Jörn Rothe
%T Uncertainty Aversion and Equilibrium
%J Contributions to game theory and management
%D 2009
%P 363-382
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2009_2_a29/
%G en
%F CGTM_2009_2_a29
Jörn Rothe. Uncertainty Aversion and Equilibrium. Contributions to game theory and management, Tome 2 (2009), pp. 363-382. http://geodesic.mathdoc.fr/item/CGTM_2009_2_a29/

[1] Anscombe F. J., Aumann R. J., “A definition of subjective probability”, Annals of Mathematical Statistics, 34 (1963), 199–205 | DOI | MR | Zbl

[2] Aumann R. J., Brandenburger A., “Epistemic conditions for Nash equilibrium”, Econometrica, 63 (1995), 1161–1180 | DOI | MR | Zbl

[3] Binmore K. G., “Modelling rational players, I”, Economics and Philosophy, 3 (1987), 179–214 | DOI

[4] Chew S. H., Wakker P. P., “The comonotonic sure-thing principle”, Journal of Risk and Uncertainty, 12 (1996), 5–27 | DOI | Zbl

[5] Choquet G., “Theory of capacities”, Annales de l'Institut Fourier (Grenoble), 5 (1953), 131–295 | DOI | MR

[6] Dempster A. P., “A generalization of Bayesian inference”, Journal of the Royal Statistical Society (Series B), 30 (1968), 205–247 | MR | Zbl

[7] Dow J., Werlang S. R. d. C., “Uncertainty aversion, risk aversion and the optimal choice of portfolio”, Econometrica, 60 (1992), 197–204 | DOI | Zbl

[8] Dow J., Werlang S. R. d. C., “Nash equilibrium under Knightian uncertainty: Breaking down backward induction”, Journal of Economic Theory, 64 (1994), 305–324 | DOI | MR | Zbl

[9] Eichberger J., Kelsey D., Non-additive beliefs and game theory, Discussion Paper No 9410, Center for Economic Research, 1994

[10] Eichberger J., Kelsey D., Signalling games with uncertainty, mimeo, 1995

[11] Fudenberg D., Maskin E. S., “The folk theorem in repeated games with discounting or with incomplete information”, Econometrica, 54 (1986), 533–554 | DOI | MR | Zbl

[12] Fudenberg D., Tirole J., Game Theory, MIT press, Cambridge, MA, 1991 | MR

[13] Gilboa I., “Expected utility with purely subjective non-additive probabilities”, Journal of Mathematical Economics, 16 (1987), 65–88 | DOI | MR | Zbl

[14] Gilboa I., Schmeidler D., “Maxmin expected utility with non-unique prior”, Journal of Mathematical Economics, 18 (1989), 141–153 | DOI | MR | Zbl

[15] Gilboa I., Schmeidler D., “Updating ambiguous beliefs”, Journal of Economic Theory, 59 (1993), 33–49 | DOI | MR | Zbl

[16] Hendon E., Jacobsen H. J., Sloth B., Tranaes T., Nash equilibrium in lower probabilities, mimeo, 1995

[17] Klibanoff P., Uncertainty, decision and normal norm games, mimeo, 1993

[18] Kreps D. M., Wilson R. B., “Sequential equilibria”, Econometrica, 50 (1982), 863–894 | DOI | MR | Zbl

[19] Kreps D. M., Milgrom P., Roberts J., Wilson R. B., “Rational cooperation in the finitely repeated prisoners' dilemma”, Journal of Economic Theory, 27 (1982), 245–252 | DOI | MR | Zbl

[20] Lo K. C., “Equilibrium in beliefs under uncertainty”, Journal of Economic Theory, 1995 (to appear) | MR

[21] Lo K. C., Extensive form games with uncertainty averse players, mimeo, 1995

[22] Marinacci M., Equilibrium in ambiguous games, mimeo, 1994

[23] Mukerji S., A theory of play for games in strategic form when rationality is not common knowledge, mimeo, 1994

[24] Reny P. J., “Common belief and the theory of games with perfect information”, Journal of Economic Theory, 59 (1993), 257–274 | DOI | MR | Zbl

[25] Rothe J., Uncertainty aversion and backward induction, mimeo, 1996

[26] Rothe J., Uncertainty aversion and equilibrium in normal form games, mimeo, 1999

[27] Rothe J., Uncertainty aversion and equilibrium in extensive form games, mimeo, 1999

[28] Sarin R., Wakker P. P., “A simple axiomatization of nonadditive expected utility”, Econometrica, 60 (1992), 1255–1272 | DOI | MR | Zbl

[29] Sarin R., Wakker P. P., “A general result for quantifying beliefs”, Econometrica, 62 (1994), 683–685 | DOI | MR | Zbl

[30] Savage L. J., The Foundations of Statistics, Wiley, New York, 1954 ; 2nd edn., Dover, 1972 | MR | Zbl | Zbl

[31] Savage L. J., “Difficulties in the theory of personal probability”, Philosophy of Science, 34 (1967), 305–310 | DOI

[32] Schmeidler D., “Integral representation without additivity”, Proceedings of the American Mathematical Society, 97 (1986), 255–261 | DOI | MR | Zbl

[33] Schmeidler D., “Subjective probability and expected utility without additivity”, Econometrica, 57 (1989), 571–587 | DOI | MR | Zbl

[34] Selten R., “Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit”, Zeitschrift für die gesamte Staatswissenschaft, 12 (1965), 301–324; 667–689

[35] Selten R., “Re-examination of the perfectness concept for equilibrium points in extensive games”, International Journal of Game Theory, 4 (1975), 25–55 | DOI | MR | Zbl

[36] Selten R., “The chain store paradox”, Theory and Decision, 9 (1978), 127–159 | DOI | MR | Zbl

[37] Shafer G., A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, 1976 | MR | Zbl

[38] Shapley L. S., “Cores of convex games”, International Journal of Game Theory, 1 (1971), 11–26 | DOI | MR | Zbl

[39] Tan T. C.-C., Werlang S. R. d. C., “The Bayesian foundations of solution concepts of games”, Journal of Economic Theory, 45 (1988), 370–391 | DOI | MR | Zbl

[40] van Damme E., “Refinements of Nash equilibrium”, Advances in Economic Theory, Sixth World Congress, ed. J.-J. Laffont, Cambridge University Press, Cambridge, UK, 1992, 32–75

[41] Wakker P. P., Additive Representations of Preferences, Kluwer Academic Publishers, Dordrecht, Netherlands, 1989 | MR | Zbl

[42] Wald A., Statistical Decision Functions, Wiley, New York, NY, 1950 | MR | Zbl