Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2009_2_a2, author = {Irinel Dragan}, title = {On the {Computation} of {Semivalues} for {TU} {Games}}, journal = {Contributions to game theory and management}, pages = {21--31}, publisher = {mathdoc}, volume = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2009_2_a2/} }
Irinel Dragan. On the Computation of Semivalues for TU Games. Contributions to game theory and management, Tome 2 (2009), pp. 21-31. http://geodesic.mathdoc.fr/item/CGTM_2009_2_a2/
[1] Dragan I., “The Average per capita formula for the Shapley Value”, Libertas Math., XII (1992), 139–146 | MR | Zbl
[2] Dragan I., Driessen T. S. H., Funaki Y., “Collinearity between the Shapley Value and the egalitarian division rules for cooperative games”, O. R. Spektrum, 18 (1996), 97–105 | DOI | MR | Zbl
[3] Dragan I., “On the Inverse problem for Semivalues of cooperative TU games”, Int. Journal of Pure and Applied Math., 22:4 (2005), 545–561 | MR | Zbl
[4] Dragan I., “The Least Square Values and the Shapley Value for cooperative TU Games”, Spanish O. R. Journal Top, 14:1 (2006), 61–73 | MR | Zbl
[5] Dragan I., “On the Semivalues and the Least Square Values: Average per capita Formulas and relationships”, Acta Mathematica Sinica, English Series, 22:5 (2006), 1539–1548 | DOI | MR | Zbl
[6] Dragan I., On the computation of Weighted Shapley Values for cooperative TU games, Technical Report #360, University of Texas at Arlington, Oct. 2008
[7] Dubey P., Neyman A., Weber R. J., “Value theory without efficiency”, Math. O. R., 6 (1981), 122–128 | DOI | MR | Zbl
[8] Hart S., Mas Colell A., “The potential of the Shapley Value”, The Shapley Value, Essays in Honor of L. S. Shapley, ed. Roth A. E., Cambridge University Press, 1987, 127–137 | MR
[9] Maschler M., “The worth of a cooperative enterprise to each member”, Games Economic Dynamics and Time Series Analysis, Physisca Verlag, Wien, 1982, 67–73 | DOI
[10] Ruiz L., Valenciano F., Zarzuelo J. M., “The family of Least Square Values for TU games”, GEB, 27 (1998), 109–130 | MR
[11] Shapley L. S., “A value for $n$-person games”, Ann. Math. Studies, 28 (1953), 307–317 | MR | Zbl