Quantum Games of Macroscopic Partners
Contributions to game theory and management, Tome 1 (2007), pp. 130-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

Examples where quantum Nash Equilibrium has been found are considered. It turned out that under certain conditions opportunist behavior leads to a greater gain than non-opportunist one. Besides, the analysis of the structure of the quantum game has shown that it is isomorphic to a sum of two inter-connected classical games. This link named “quantum cooperation” is expressed by means of a non-linear relation between the probabilities of the choice of corresponding pure strategies. The difference between the quantum cooperation and the usual correlation has been demonstrated. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of the Planck’s constant. Possible role of quantum logical lattices for existence of macroscopic quantum equilibria is discussed. The games modelling opportunist behavior have the structure that is characteristic of the description of microparticles with a spin equal to $\frac12$ and $1$ when additional variables are measured.
@article{CGTM_2007_1_a9,
     author = {Ludmila Franeva and Andrei Grib and Georgy Parfionov},
     title = {Quantum {Games} of {Macroscopic} {Partners}},
     journal = {Contributions to game theory and management},
     pages = {130--151},
     publisher = {mathdoc},
     volume = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a9/}
}
TY  - JOUR
AU  - Ludmila Franeva
AU  - Andrei Grib
AU  - Georgy Parfionov
TI  - Quantum Games of Macroscopic Partners
JO  - Contributions to game theory and management
PY  - 2007
SP  - 130
EP  - 151
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2007_1_a9/
LA  - en
ID  - CGTM_2007_1_a9
ER  - 
%0 Journal Article
%A Ludmila Franeva
%A Andrei Grib
%A Georgy Parfionov
%T Quantum Games of Macroscopic Partners
%J Contributions to game theory and management
%D 2007
%P 130-151
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2007_1_a9/
%G en
%F CGTM_2007_1_a9
Ludmila Franeva; Andrei Grib; Georgy Parfionov. Quantum Games of Macroscopic Partners. Contributions to game theory and management, Tome 1 (2007), pp. 130-151. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a9/

[1] Eisert J., Wilkens M., Lewenstein M., “Quantum games and quantum strategies”, Phys. Rev. Lett., 83 (1999), 3077–3080 | DOI | MR | Zbl

[2] Deutsh D., “Quantum Theory of Probability and Decisions”, Proc. Roy. Soc. Lond., 1999

[3] Barnum H., Caves C. M., Finkelstein J., Fuchs C. A., Shack R., Quantum Probability from Decisions Theory, 1999, arXiv: quant-ph/9907024

[4] Piotrowski E. W., Sladkowski J., “An invitation to quantum game theory”, International Journal of Theoretical Physics, 42 (2003), 1089–1090 | DOI | MR

[5] Polley I., Reducing the Statistical Axiom, Phys. Dept. Oldenburg Univ. D-26111, 1999

[6] Flitney A. P., Abbott D., An introduction to quantum game theory, 2002, arXiv: quant-ph/0208069v2 | MR

[7] Iqbal A., Toor A., Quantum repeated games, 2002, arXiv: quant-ph/0203044v2 | MR

[8] Jinshan Wu, Quantum Prisoner's Dilemma in the new representation, 2004, arXiv: quant-ph/0405032v2

[9] Marinatto L., Weber T., “A quantum Approach to Static Games of Complete Information”, Phys. Lett. A, 272 (2000), 291 | DOI | MR | Zbl

[10] Grib A., Khrennikov A., Parfionov G., Starkov K., “Quantum equilibrium for macroscopic systems”, Journal of Physics A: Mathematical and General, 39 (2002), 8461–8475 | DOI | MR

[11] Finkelstein D., Finkelstein S., “Computational complementarity”, Int. Journ. Theor. Phys., 22:8 (1993), 753–779 | DOI | MR

[12] Grib A., Zapatrin R., “Automata simulating quantum logics”, Intern. Journ. Theor. Phys., 29:2 (1990), 113–123 | DOI | MR | Zbl

[13] Grib A., Parfionov G., Can a game be quantum?, Journ. of Mathem. Sci., 125:2 (2005), 173–184 | DOI | MR

[14] Grib A., Khrennikov A., Starkov K., “Probability amplitude in Quantum Like Games”, Quantum Theory: reconsideration of foundations-2, Vaxjo University Press, 2003, 703–723 | MR

[15] Grib A., Khrennikov A., ParfionovG., Starkov K., “Distributivity breaking and macroscopic quantum games”, Foundations of probability and physics, Amer. Inst. of Physics, Melvill–Vaxjo, 2004, 108–114 | MR

[16] Aerts D., “Quantum structure: an attempt to explain the origin of their appearence in nature”, Int. Journ. of Theor. Phys., 34 (1995), 1165–1186 | DOI | MR | Zbl

[17] Birkhoff Gg., J. von Neumann, “The logic of quantum mechanics”, Ann. Math., 37 (1936), 823–843 | DOI | MR

[18] Piron C., Foundations of quantum physics, W. A. Benjamin Inc., 1976 | MR | Zbl

[19] Grib A., Zapatrin R., “Topology lattices as quantum logics”, Int. Journ. Theor. Phys., 31:7 (1992), 1093–1101 | DOI | MR | Zbl

[20] Birkhoff G., Lattice Theory, AMS Colloc. Publ., 25, AMS, Providence, Rhode Island, 1993

[21] Gràtzer G., Lattice Theory, Freeman Co., San Francisco | Zbl

[22] H. von Stackelberg, The theory of the market economy, Oxford Univ. Press, Oxford, 1952

[23] H. Moulin, Théorie des jeux pour l'économie et la politique, Hermann, Paris, 1981

[24] Akerlof G., “The market for “lemons”: Quality uncertainty and the market mechanism”, Quart. J. Econ., 84 (1970), 488–500 | DOI

[25] Kalmbach G., Orthomodular lattices, Academic Press Inc., London, 1983 | MR | Zbl

[26] Gleason A., “Measures on the Closed Subspaces of a Hilbert Space”, J. Math. Mech., 6 (1957), 885–893 | MR | Zbl