Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2007_1_a7, author = {Irinel Dragan}, title = {On {Quasi-cores,} the {Shapley} {Value} and the {Semivalues}}, journal = {Contributions to game theory and management}, pages = {107--122}, publisher = {mathdoc}, volume = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a7/} }
Irinel Dragan. On Quasi-cores, the Shapley Value and the Semivalues. Contributions to game theory and management, Tome 1 (2007), pp. 107-122. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a7/
[1] Banzhaf J. F., “Weighted voting doesn't work: a mathematical analysis”, Rutgers Law Review, 19 (1965), 317–343
[2] Bondareva O., “Some applications of linear programming methodsto the theory of cooperative games”, Problemi Kibernetiki, 10 (1963), 119–139 | MR | Zbl
[3] Calvo E., Santos J., “Potentials in cooperative TU games”, Math. Soc. Sc., 34 (1997), 173–190 | MR
[4] Dragan I., “An Average per capita formula for the Shapley value”, Libertas Math., 12 (1992), 139–143 | MR
[5] Dragan I., Martinez-Legaz J. E., “On the Semivalues and the Power Core of cooperative TU games”, I.G.T.R., 3 (2001), 127–139 | MR | Zbl
[6] Dragan I., “On the computation of Semivaluesvia the Shapley value”, Proceedings of the 4th Workshop on cooperative Game theory, eds. T. S. H. Driessen, J. B. Timmer, A. B. Khmelnitskaya, University of Twente, 2005, 17–26
[7] Dragan I., “The Least Square values and the Shapley value for cooperative TU games”, Top, 14:1 (2006), 61–73 | DOI | MR | Zbl
[8] Dubey P., Neyman A., Weber R. J., “Value theory without efficiency”, Math. O. R., 6 (1981), 122–128 | DOI | MR | Zbl
[9] Gillies D. B., Some theorems on n-person games, Ph. D. Thesis, Princeton University, 1953 | MR
[10] Gillies D. B., “Solutions to general non-zero-sum games”, Ann. Math. Studies, 40, 1959, 47–85 | MR | Zbl
[11] Inarra E., Usategui J. M., “The Shapley value and the average convex games”, IJGT, 22 (1993), 13–29 | MR | Zbl
[12] Izawa Y., Takahashi W., “The coalitional rationality of the Shapley value”, J. Math. Analysis and Appl., 220 (1998), 597–602 | DOI | MR | Zbl
[13] Kannai Y., “The Core and balancedness”, Handbook of Game Theory, Chapter 12, v. I, eds. R. Aumann, S. Hart, Elsevier, 1992, 355–395 | MR | Zbl
[14] Owen G., Game Theory, Ed. 3, Academic Press, New York, 1982 | MR | Zbl
[15] Marin-Solano J., Rafels-Pallarola C., Convexity, average convexity and simple games, Documents of Treball. Univ. de Barcelona, E96/03, 1996
[16] Ruiz L., Valenciano F., Zarzuelo J. M., “The family of Least Square values for TU games”, GEB, 27 (1998), 109–130 | MR
[17] Sanchez F. S., “Balanced contributions axiom in the solution of cooperative games”, GEB, 20 (1997), 161–168 | MR | Zbl
[18] Shapley L. S., “A value for n-person games”, Ann. Math. Studies, 28, 1953, 307–317 | MR | Zbl
[19] Shapley L. S., “On balanced sets and cores”, NRLQ, 14 (1967), 453–460 | DOI
[20] Shapley L. S., Shubik M., “Quasi-cores in a monetary economy with nonconvex preferences”, Econ., 34 (1966), 805–828