Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2007_1_a30, author = {Elena Yanovskaya}, title = {One {More} {Uniqueness} of the {Shapley} {Value}}, journal = {Contributions to game theory and management}, pages = {504--523}, publisher = {mathdoc}, volume = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a30/} }
Elena Yanovskaya. One More Uniqueness of the Shapley Value. Contributions to game theory and management, Tome 1 (2007), pp. 504-523. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a30/
[1] Brink R. van den, “An axiomatization of the Shapley value using a fairness property”, International Journal of Game Theory, 30 (2001), 309–319 | DOI | MR | Zbl
[2] Chun Y., “A new axiomatization of the Shapley value”, Games and Economic behavior, 1 (1989), 119–130 | DOI | MR | Zbl
[3] Dubey P., “On the uniqueness of the Shapley value”, International Journal of Game Theory, 4 (1975), 131–139 | DOI | MR | Zbl
[4] Dutta B., “The egalitarian solution and the reduced game properties in convex games”, International Journal of Game Theory, 19 (1990), 153–159 | DOI | MR
[5] Hart S., Mas-Colell A., “Potential, value, and consistency”, Econometrica, 57 (1989), 589–614 | DOI | MR | Zbl
[6] Myerson R., “Graphs and cooperation in games”, Mathematics of Operations Research, 2 (1977), 225–229 | DOI | MR | Zbl
[7] Neyman A., “Uniqueness of the Shapley value”, Games and Economic Behavior, 1 (1989), 116–118 | DOI | MR | Zbl
[8] Ruiz L. M., Valenciano F., Zarzuelo J., “The family of least square values for transferable utilities games”, Games and Economic Behaviour, 4 (1998), 109–130 | DOI | MR
[9] Shapley L. S., “A value for $n$-person games”, Annals of Mathematics Study, 28, Princeton University Press, 1953, 307–317 ; The Shapley value, Essays in honor of Lloyd S. Shapley, ed. Roth A. E., Cambridge University Press, Cambridge, U.S.A., 31–40 | MR | MR
[10] Sobolev A. I., “The characterization of optimality principles in cooperative games by functional equations”, Mathematical Methods in the Social Sciences, 6, ed. N. N. Vorob'ev, Vilnius, 1975, 94–151 | Zbl
[11] Weber R. J., “Probabilistic values for games”, The Shapley value, Essays in honor of Lloyd S. Shapley, ed. Roth A. E., Cambridge University Press, Cambridge, U.S.A., 1988, 101–119 | DOI | MR
[12] Yanovskaya E., Driessen T., “On linear consistency of anonymous values for TU games”, International Journal of Game Theory, 30 (2001), 601–609 | DOI | MR | Zbl
[13] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14 (1985), 65–72 | DOI | MR | Zbl