One More Uniqueness of the Shapley Value
Contributions to game theory and management, Tome 1 (2007), pp. 504-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of TU games whose maximal per capita characteristic function values are attained on the grand coalition. Three axiomatic characterizations of the Shapley value — Shapley’s original axiomatization, Sobolev’s axiomatization with the aid of consistency, and Young’s axiomatization by means of marginality — are used for the corresponding axiomatization of the Shapley value on the class of totally cooperative games. It is shown that only two last axiomatizations characterize the Shapley value uniquely, and Shapley’s axiomatization leads to linear combinations of the Shapley value and the egalitarian value.
Keywords: maximal per capita values, Shapley value, axiomatic characterization.
@article{CGTM_2007_1_a30,
     author = {Elena Yanovskaya},
     title = {One {More} {Uniqueness} of the {Shapley} {Value}},
     journal = {Contributions to game theory and management},
     pages = {504--523},
     publisher = {mathdoc},
     volume = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a30/}
}
TY  - JOUR
AU  - Elena Yanovskaya
TI  - One More Uniqueness of the Shapley Value
JO  - Contributions to game theory and management
PY  - 2007
SP  - 504
EP  - 523
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2007_1_a30/
LA  - en
ID  - CGTM_2007_1_a30
ER  - 
%0 Journal Article
%A Elena Yanovskaya
%T One More Uniqueness of the Shapley Value
%J Contributions to game theory and management
%D 2007
%P 504-523
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2007_1_a30/
%G en
%F CGTM_2007_1_a30
Elena Yanovskaya. One More Uniqueness of the Shapley Value. Contributions to game theory and management, Tome 1 (2007), pp. 504-523. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a30/

[1] Brink R. van den, “An axiomatization of the Shapley value using a fairness property”, International Journal of Game Theory, 30 (2001), 309–319 | DOI | MR | Zbl

[2] Chun Y., “A new axiomatization of the Shapley value”, Games and Economic behavior, 1 (1989), 119–130 | DOI | MR | Zbl

[3] Dubey P., “On the uniqueness of the Shapley value”, International Journal of Game Theory, 4 (1975), 131–139 | DOI | MR | Zbl

[4] Dutta B., “The egalitarian solution and the reduced game properties in convex games”, International Journal of Game Theory, 19 (1990), 153–159 | DOI | MR

[5] Hart S., Mas-Colell A., “Potential, value, and consistency”, Econometrica, 57 (1989), 589–614 | DOI | MR | Zbl

[6] Myerson R., “Graphs and cooperation in games”, Mathematics of Operations Research, 2 (1977), 225–229 | DOI | MR | Zbl

[7] Neyman A., “Uniqueness of the Shapley value”, Games and Economic Behavior, 1 (1989), 116–118 | DOI | MR | Zbl

[8] Ruiz L. M., Valenciano F., Zarzuelo J., “The family of least square values for transferable utilities games”, Games and Economic Behaviour, 4 (1998), 109–130 | DOI | MR

[9] Shapley L. S., “A value for $n$-person games”, Annals of Mathematics Study, 28, Princeton University Press, 1953, 307–317 ; The Shapley value, Essays in honor of Lloyd S. Shapley, ed. Roth A. E., Cambridge University Press, Cambridge, U.S.A., 31–40 | MR | MR

[10] Sobolev A. I., “The characterization of optimality principles in cooperative games by functional equations”, Mathematical Methods in the Social Sciences, 6, ed. N. N. Vorob'ev, Vilnius, 1975, 94–151 | Zbl

[11] Weber R. J., “Probabilistic values for games”, The Shapley value, Essays in honor of Lloyd S. Shapley, ed. Roth A. E., Cambridge University Press, Cambridge, U.S.A., 1988, 101–119 | DOI | MR

[12] Yanovskaya E., Driessen T., “On linear consistency of anonymous values for TU games”, International Journal of Game Theory, 30 (2001), 601–609 | DOI | MR | Zbl

[13] Young H. P., “Monotonic solutions of cooperative games”, International Journal of Game Theory, 14 (1985), 65–72 | DOI | MR | Zbl