Proportionality in NTU Games: Proportional Excess, Nucleolus and Prenucleolus
Contributions to game theory and management, Tome 1 (2007), pp. 394-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

An axiomatic approach is developed to define the proportional excess function on the space of positively generated NTU games. This excess generalizes to NTU games the proportional TU excess $v(S)/x(S)$. Five axioms are proposed, and it is shown that the proportional excess is the unique excess function satisfying the axioms. The properties of proportional excess and corresponding nucleolus, prenucleolus and, in particular, status quo-proportional solution for bargaining games are studied.
Keywords: NTU games, excess function, proportional excess, Minkowski gauge function, nucleolus, prenucleolus, bargaining solution.
@article{CGTM_2007_1_a24,
     author = {Sergei Pechersky},
     title = {Proportionality in {NTU} {Games:} {Proportional} {Excess,} {Nucleolus} and {Prenucleolus}},
     journal = {Contributions to game theory and management},
     pages = {394--412},
     publisher = {mathdoc},
     volume = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a24/}
}
TY  - JOUR
AU  - Sergei Pechersky
TI  - Proportionality in NTU Games: Proportional Excess, Nucleolus and Prenucleolus
JO  - Contributions to game theory and management
PY  - 2007
SP  - 394
EP  - 412
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2007_1_a24/
LA  - en
ID  - CGTM_2007_1_a24
ER  - 
%0 Journal Article
%A Sergei Pechersky
%T Proportionality in NTU Games: Proportional Excess, Nucleolus and Prenucleolus
%J Contributions to game theory and management
%D 2007
%P 394-412
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2007_1_a24/
%G en
%F CGTM_2007_1_a24
Sergei Pechersky. Proportionality in NTU Games: Proportional Excess, Nucleolus and Prenucleolus. Contributions to game theory and management, Tome 1 (2007), pp. 394-412. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a24/

[1] Billera L. J., A note on a kernel and the core for games without side payments, Technical Report, No 152, Dept. of Operations Research, Cornell University, Ithaca, New York, 1972

[2] Billera L. J., McLean R. P., “Games in support function form: an approach to the kernel of NTU games”, Essays in Game Theory in Honor of Michael Maschler, ed. Megiddo N., Springer-Verlag, New York, 1994, 39–49 | DOI | MR | Zbl

[3] Bondareva O. N., The nucleolus of a game without side payments, Working Paper, No 176, Institute of Mathematical Economics, Bielefeld University, Germany, 1989

[4] Feldman B., The proportional value of a cooperative game, Mimeo, October 1999, Seudder Kemper Investments, Chicago, 1999

[5] Kalai E., Excess functions, nucleolus, kernel and $\varepsilon$-core of non-sidepayments cooperative games, Technical Report No 12, Department of Statistics, Tel-Aviv University, 1973

[6] Kalai E., “Excess functions for cooperative games without sidepayments”, SIAM J. Appl. Math., 29 (1975), 60–71 | DOI | MR

[7] Kalai E., Smorodinsky M., “Other solution to Nash's bargaining problem”, Econometrica, 43 (1975), 513–518 | DOI | MR | Zbl

[8] Lemaire J., “Cooperative game theory and its insurance applications”, Austin Bull., 21 (1991), 17–40 | DOI

[9] Maschler M., “The bargaining set, kernel and nucleolus”, Handbook of game theory with economic applications, v. 1, eds. Aumann R. J., Hart S., Elsevier, Amsterdam, 1992, 591–667 | MR | Zbl

[10] Maschler M., Peleg B., Shapley L., “Geometric properties of the kernel, nucleolus and related solution concepts”, Mathematics of Operations Research, 4 (1979), 303–338 | DOI | MR | Zbl

[11] McLean R. P., Postlewaite A., “Excess functions and nucleolus allocation of pure exchange economies”, Games and Economic Behavior, 1 (1989), 131–143 | DOI | MR | Zbl

[12] Moulin H., “Axiomatic cost and surplus sharing methods”, Handbook on Social Choice and Welfare, eds. Arrow K. J., Sen A. K., Suzumura K., Elsevier Science B. V., 2002, 289–357

[13] Nakayama M., “A note on a generalization of the nucleolus to games without sidepayments”, International Journal of Game Theory, 12 (1983), 115–122 | DOI | MR | Zbl

[14] Nash J., “The bargaining problem”, Econometrica, 18 (1950), 155–162 | DOI | MR | Zbl

[15] Ortmann K. M., “The proportional value for positive cooperative games”, Math. Meth. Oper. Res., 51 (2000), 235–248 | DOI | MR | Zbl

[16] Pechersky S., “Excess functions for NTU games. An axiomatic approach”, Mathematical Economics Research: mathematical models and informational technologies, v. 1, St. Petersburg, 2000, 65–82 (in Russian)

[17] Pechersky S., “On gauge excess function for NTU-games: an axiomatic approach”, Logic, Game Theory and Social Choice, Extended abstracts of International Conference (St. Petersburg, 2001), 195–198

[18] Pechersky S., Sobolev A., “Set-valued nonlinear analogues of the Shapley value”, Int. J. Game Theory, 24 (1995), 57–78 | DOI | MR | Zbl

[19] Pechersky S., Yanovskaya E., Cooperative games: solutions and axioms, European University at St. Petersburg Press, St. Petersburg, 2004 (in Russian)

[20] Rockafellar R. T., Convex analysis, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl

[21] Rubinov A., Yagubov A., “The space of star-shaped sets and its applications in nonsmooth optimization”, Math. Programm. Study, 29 (1986), 176–202 | DOI | MR | Zbl

[22] Shapley L. S., “Utility comparison and the theory of games”, La décision, ed. G. Th. Guilbaud, CNRS, Paris, 1969, 251–263

[23] Thomson L., The mind and heart of the negotiator, Prentice Hall, New Jersey, 1998

[24] Young P., Equity: in theory and practice, Princeton University Press, Princeton, 1994