Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2007_1_a21, author = {Natalia Naumova}, title = {Generalized {Kernels} and {Bargaining} {Sets} for {Families} of {Coalitions}}, journal = {Contributions to game theory and management}, pages = {346--360}, publisher = {mathdoc}, volume = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a21/} }
Natalia Naumova. Generalized Kernels and Bargaining Sets for Families of Coalitions. Contributions to game theory and management, Tome 1 (2007), pp. 346-360. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a21/
[1] Aumann R. J., Maschler M., “The bargaining set for cooperative games”, Annals of Math. Studies, 52, Princeton Univ. Press, Princeton N. J., 1964, 443–476 | MR
[2] Davis M., Maschler M., “Existence of stable payoff configurations for cooperative games”, Bull. Amer. Math. Soc., 69 (1963), 106–108 | DOI | MR | Zbl
[3] Davis M., Maschler M., “Existence of stable payoff configurations for cooperative games”, Essays in Mathematical Economics in Honor of Oskar Morgenstern, ed. Shubic M., Princeton Univ. Press, Princeton, 1967, 39–52 | MR
[4] Maschler M., “The bargaining set, Kernel and Nucleolus”, Handbook of Game Theory with Economic Applications, v. 1, eds. Aumann R., Hart S., 1992, 591–668 | MR
[5] Maschler M., Peleg B., “A characterization, existence proof and dimension bounds of the kernel of a game”, Pacific J. of Math., 18 (1966), 289–328 | DOI | MR | Zbl
[6] Vestnik Leningrad. Univ. Math., 9 (1981), 131–139 | MR | Zbl | Zbl
[7] Vestnik Leningrad. Univ. Math., 11 (1983), 67–73 | MR | Zbl | Zbl
[8] Peleg B., “Existence theorem for the bargaining set $M_1^i$”, Bull. Amer. Math. Soc., 69 (1963), 109–110 | DOI | MR | Zbl
[9] Peleg B., “Existence theorem for the bargaining set $M_1^i$”, Essays in Mathematical Economics in Honor of Oskar Morgenstern, 1967, 53–56, Princeton Univ. Press, Princeton | MR
[10] Peleg B., “Equilibrium points for open acyclic relations”, Canad. J. Math., 19, 366–369 | DOI | MR | Zbl