A Game-theoretic Approach to Multicriteria Problems
Contributions to game theory and management, Tome 1 (2007), pp. 294-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new concept of the single-valued solution for the multicriteria problems using the principles of the consistency and equilibrium from the game theory is introduced. For this solution new equations are constructed and conditions of its Pareto optimality are established. Examples are considered.
Keywords: Multicriteria optimisation, Pareto optimality, consistency, equilibrium, game theory.
@article{CGTM_2007_1_a18,
     author = {Andrew Lyapunov},
     title = {A {Game-theoretic} {Approach} to {Multicriteria} {Problems}},
     journal = {Contributions to game theory and management},
     pages = {294--315},
     publisher = {mathdoc},
     volume = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a18/}
}
TY  - JOUR
AU  - Andrew Lyapunov
TI  - A Game-theoretic Approach to Multicriteria Problems
JO  - Contributions to game theory and management
PY  - 2007
SP  - 294
EP  - 315
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2007_1_a18/
LA  - en
ID  - CGTM_2007_1_a18
ER  - 
%0 Journal Article
%A Andrew Lyapunov
%T A Game-theoretic Approach to Multicriteria Problems
%J Contributions to game theory and management
%D 2007
%P 294-315
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2007_1_a18/
%G en
%F CGTM_2007_1_a18
Andrew Lyapunov. A Game-theoretic Approach to Multicriteria Problems. Contributions to game theory and management, Tome 1 (2007), pp. 294-315. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a18/

[1] Abhinay M., Bargaining. Theory with applications, Cambrige University Press, Cambrige, UK, 1999 | Zbl

[2] Angilella S., Greco S., Lamantia F., Matarazzo B., “Assessing nonaditive utility for multicriteria decision aid”, Europ. J. of Operat. Res., 158 (2004), 734–744 | DOI | MR | Zbl

[3] Doumpos M., Zopounidis C., “A multicriteria classification approach based on pairwise comparisons”, Europ. J. of Operat. Res., 158 (2004), 378–389 | DOI | MR | Zbl

[4] Kostreva M. M., Ogryczak M., Wierbicki A., “Equitable aggregations and multiple criteria analysis”, Europ. J. of Operat. Res., 158 (2004), 362–377 | DOI | MR | Zbl

[5] Leskinen P., Kangas A., Kangas J., “Rank-based modelling of preference in multi-criteria decision making”, Europ. J. of Operat. Res., 158 (2004), 721–733 | DOI | Zbl

[6] Liapounov A. N., “Consistency and equilibrium in multicriteria problems”, Surveys in Appl. and Industr. Math., 12:1 (2005), 163–164 (in Russian)

[7] Liapounov A. N., “Equilibrium solutions in multicriteria problems”, Survey in Appl. and Industr. Math., 12:4 (2005), 863–864 (in Russian)

[8] Liapounov A. N., “Consistency and equlibrium in multicriteria problems”, Mathematical models and information technologies, v. I, Economical and mathematical studies, IV, St. Petersburg, 2005, 92–110 (in Russian)

[9] Liapounov A. N., “Covariant solutions in multicriteria problems”, Survey in Appl. and Industr. Math., 14:2 (2007), 246–248 (in Russian)

[10] Liapunov A. M., “Probleme genceral de la stabilite du movement”, Ann. de la Faculté des science de l'Univ. de Toulouse. 2e série, IX (1907), 203–474 | MR

[11] Nash J. F., “The bargaining problem”, Econometrica, 28 (1950), 155–162 | DOI | MR

[12] Noghin V. D., Decision making in multicriteria problems: a quantity approach, Fusmathlit, M., 2002 (in Russian)

[13] Podinovsky V. V., Noghin V. D., Pareto optimal solutions in multicriteria problems, Fusmathlit, M., 1982 (in Russian)

[14] Rubinstein A., Osborne M., Bargaining and Markets, Academic Press, San Diego, California, 1990 | Zbl

[15] Thomson W., “Cooperative models of bargaining”, Handbook of Game Theory, Chap. 35, v. 2, eds. Aumann R., Hart S., Elsvier Science B. V., 1994 | MR | Zbl

[16] Vorob'ev N. N., Game theory for economists-cybernetics, Nauka, M., 1985 (in Russian) | MR