Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CGTM_2007_1_a1, author = {Elvio Accinelli and Juan Gabriel Brida and Edgar J. S. Carrera}, title = {A {Two} {Population} {Growing} {Model:} {Exogamic} or {Endogamic}}, journal = {Contributions to game theory and management}, pages = {7--14}, publisher = {mathdoc}, volume = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a1/} }
TY - JOUR AU - Elvio Accinelli AU - Juan Gabriel Brida AU - Edgar J. S. Carrera TI - A Two Population Growing Model: Exogamic or Endogamic JO - Contributions to game theory and management PY - 2007 SP - 7 EP - 14 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CGTM_2007_1_a1/ LA - en ID - CGTM_2007_1_a1 ER -
Elvio Accinelli; Juan Gabriel Brida; Edgar J. S. Carrera. A Two Population Growing Model: Exogamic or Endogamic. Contributions to game theory and management, Tome 1 (2007), pp. 7-14. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a1/
[1] Basar T., Olsder J., Dynamic noncooperative game theory, Academic Press, New York, 1982 | MR
[2] Bornerstedt J., Weibull J., “Nash equilibrium and evolution by imitation”, The Rational Foundations of Economic Behaviour, eds. K. Arrow et al., Macmillan, 1996
[3] Cover T., Thomas J., Elements of Information Theory, Wiley, 1991 | MR | Zbl
[4] Cressman R., Vlastimil K., Garay J., “Ideal Free Distributions, Evolutionary Games, and Population Dynamics in Multiple-Species Environments”, The American Naturalist, 164:4 (2004), 473–489 | DOI
[5] Hines W. G. S., “Three Characterizations of Population Strategy Stability”, Journal of Applied Probability, 17 (1980), 333–340 | DOI | MR | Zbl
[6] Samuelson L., Zhang J., “Evolutionary Stability in Asymmetric Games”, Journal of Economic Theory, 57 (1992), 363–391 | DOI | MR | Zbl
[7] Schlag K., ““Why Imitate, and if so, How?” A Boundedly Rational Approach to Multi-Armed Bandits”, Journal of Economic Theory, 78:1 (1998), 130–156 | DOI | MR | Zbl
[8] Schlag K., “Which One Should I Imitate”, Journal of Mathematical Economics, 31:4 (1998), 493–522 | DOI | MR
[9] Van Damme E., Stability and Perfection of Nash Equilibria, Springer-Verlag, Berlin, 1991 | MR
[10] Weibull W. J., Evolutionary Game Theory, MIT Press, 1995 | MR | Zbl