A Two Population Growing Model: Exogamic or Endogamic
Contributions to game theory and management, Tome 1 (2007), pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show an analytic model for a situation in which two populations are confronted in an exogamic or endogamic way. Our approach is based on Evolutionary Game Theory for Non-Symmetric Games but considering a new rule of imitation: evolutive regret when the probability of selecting the best strategy is included. The rule states to choose the actions with the best results, with a probability proportional to the expected gains. In particular, we show the relation between Dynamic Strategy and Nash equilibrium in an asymmetric game of imitation strategies.
Keywords: Imitation, replicator dynamic, stable population, stability and Nash equilibrium.
@article{CGTM_2007_1_a1,
     author = {Elvio Accinelli and Juan Gabriel Brida and Edgar J. S. Carrera},
     title = {A {Two} {Population} {Growing} {Model:} {Exogamic} or {Endogamic}},
     journal = {Contributions to game theory and management},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CGTM_2007_1_a1/}
}
TY  - JOUR
AU  - Elvio Accinelli
AU  - Juan Gabriel Brida
AU  - Edgar J. S. Carrera
TI  - A Two Population Growing Model: Exogamic or Endogamic
JO  - Contributions to game theory and management
PY  - 2007
SP  - 7
EP  - 14
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CGTM_2007_1_a1/
LA  - en
ID  - CGTM_2007_1_a1
ER  - 
%0 Journal Article
%A Elvio Accinelli
%A Juan Gabriel Brida
%A Edgar J. S. Carrera
%T A Two Population Growing Model: Exogamic or Endogamic
%J Contributions to game theory and management
%D 2007
%P 7-14
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CGTM_2007_1_a1/
%G en
%F CGTM_2007_1_a1
Elvio Accinelli; Juan Gabriel Brida; Edgar J. S. Carrera. A Two Population Growing Model: Exogamic or Endogamic. Contributions to game theory and management, Tome 1 (2007), pp. 7-14. http://geodesic.mathdoc.fr/item/CGTM_2007_1_a1/

[1] Basar T., Olsder J., Dynamic noncooperative game theory, Academic Press, New York, 1982 | MR

[2] Bornerstedt J., Weibull J., “Nash equilibrium and evolution by imitation”, The Rational Foundations of Economic Behaviour, eds. K. Arrow et al., Macmillan, 1996

[3] Cover T., Thomas J., Elements of Information Theory, Wiley, 1991 | MR | Zbl

[4] Cressman R., Vlastimil K., Garay J., “Ideal Free Distributions, Evolutionary Games, and Population Dynamics in Multiple-Species Environments”, The American Naturalist, 164:4 (2004), 473–489 | DOI

[5] Hines W. G. S., “Three Characterizations of Population Strategy Stability”, Journal of Applied Probability, 17 (1980), 333–340 | DOI | MR | Zbl

[6] Samuelson L., Zhang J., “Evolutionary Stability in Asymmetric Games”, Journal of Economic Theory, 57 (1992), 363–391 | DOI | MR | Zbl

[7] Schlag K., ““Why Imitate, and if so, How?” A Boundedly Rational Approach to Multi-Armed Bandits”, Journal of Economic Theory, 78:1 (1998), 130–156 | DOI | MR | Zbl

[8] Schlag K., “Which One Should I Imitate”, Journal of Mathematical Economics, 31:4 (1998), 493–522 | DOI | MR

[9] Van Damme E., Stability and Perfection of Nash Equilibria, Springer-Verlag, Berlin, 1991 | MR

[10] Weibull W. J., Evolutionary Game Theory, MIT Press, 1995 | MR | Zbl