Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_3_a9, author = {Vallarino, Maria}, title = {Spazi di {Hardy} su gruppi a crescita esponenziale di volume}, journal = {Bollettino della Unione matematica italiana}, pages = {673--684}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {3}, year = {2013}, zbl = {1180.42008}, mrnumber = {3202845}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a9/} }
Vallarino, Maria. Spazi di Hardy su gruppi a crescita esponenziale di volume. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 673-684. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a9/
[1] $H^1$ and BMO for certain locally doubling metric measure spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (2009), 543-582. | MR | Zbl
, , ,[2] Analyse harmonique non commutative sur certains espaces homogenes, Lecture Notes in Mathematics 242. Springer (1971). | MR | Zbl
, ,[3] Extensions of Hardy spaces and their use in Analysis, Bull. Am. Math. Soc. 83 (1977), 569-645. | DOI | MR | Zbl
, ,[4] Weak type (1; 1) estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc. 323 (1991), 637- 649. | DOI | MR | Zbl
, , , ,[5] Spectral multipliers for a distinguished laplacian on certain groups of exponential growth, Studia Math. 111 (1994), 103-121. | fulltext EuDML | DOI | MR | Zbl
, , , ,[6] $H^p$ spaces of several variables, Acta Math. 129 (1972), 137-193. | DOI | MR
, ,[7] Singular integrals on Iwasawa NA groups of rank 1, J. Reine Angew. Math. 479 (1996), 39-66. | fulltext EuDML | DOI | MR
, ,[8] Singular integrals associated to the Laplacian on the affine group $ax + b$, Ark. Mat. 30 (1992), 259-281. | DOI | MR
, , ,[9] A note on maximal functions on a solvable Lie group, Arch. Math. (Basel) 55 (1990), 156-160. | DOI | MR
, ,[10] Maximal function characterizations of Hardy spaces on RD-spaces and their applications, Sci. China Ser. A 51 (2008), 2253-2284. | DOI | MR | Zbl
, , ,[11] Radial maximal function characterizations for Hardy spaces on RD-spaces, Bull. Soc. Math. France 13 (2009), 225-251. | fulltext EuDML | DOI | MR | Zbl
, , ,[12] Multipliers and singular integrals on exponential growth groups, Math. Z. 245 (2003), 37-61. | DOI | MR | Zbl
, ,[13] A maximal function characterization of Hardy spaces on spaces of homogeneous type, Approx. Theory Appl. (N. S.) 14 (1998), 12-27. | MR | Zbl
,[14] Dyadic sets, maximal functions and applications on $ax + b$-groups. Math. Z. 270 (2012), 515-529. | DOI | MR | Zbl
, , ,[15] A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. | DOI | MR | Zbl
, ,[16] Equivalence of norms on finite linear combinations of atoms, Math. Z. 269 (2011), 253-260. | DOI | MR | Zbl
, ,[17] Hardy type spaces on certain noncompact manifolds and applications, J. London Math. Soc. 84 (2011), 243-268. | DOI | MR | Zbl
, , ,[18] Atomic decomposition of Hardy type spaces on certain noncompact manifolds, J. Geom. Anal. 22 (2012), 864-891. | DOI | MR | Zbl
, , ,[19] On the $H^1-L^1$ boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), 2921-2931. | DOI | MR | Zbl
, , ,[20] Wave equation and multiplier estimates on $ax + b$ groups, Studia Math. 179 (2007), 117-148. | DOI | MR | Zbl
, ,[21] Regularity properties of Fourier integral operators, Ann. of Math. 134 (1991), 231-251. | DOI | MR | Zbl
, , ,[22] Boundedness from $H^1$ to $L^1$ of Riesz transforms on a Lie group of exponential growth, Ann. Inst. Fourier 58 (2008), 1117-1151. | fulltext EuDML | MR | Zbl
, ,[23] Heat maximal function on a Lie group of exponential growth, Ann. Acad. Sci. Fenn. Math. 37 (2012), 491-507. | DOI | MR | Zbl
, ,[24] Harmonic Analysis. Princeton University Press (1993). | MR
,[25] On the theory of harmonic functions of several variables.I. The theory of $H^p$-spaces, Acta Math. 103 (1960), 25-62. | DOI | MR | Zbl
, ,[26] Hardy spaces and BMO on manifolds with bounded geometry, J. Geom. Anal. 19 (2009), 137-190. | DOI | MR | Zbl
,[27] The space $H^1$ for nondoubling measures in terms of a grand maximal operator, Trans. Amer. Math. Soc. 355 (2003), 315-348. | DOI | MR | Zbl
,[28] Spaces $H^1$ and BMO on exponential growth groups, Collect. Math. 60 (2009), 277-295. | fulltext EuDML | DOI | MR | Zbl
, , capitolo 16 in Trends in Harmonic Analysis, Springer INdAM Series, Vol.