Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 643-672.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this note we discuss low-dimensional matrix representations of pure braid group (on three and four strands) obtained via holonomy of suitable nilpotent flat connections. Flatness is directly enforced by means of the Arnol'd relations. These explicit representations are used to investigate Brunnian and “nested” Brunnian phenomena.
@article{BUMI_2013_9_6_3_a8,
     author = {Benvegn\`u, Alberto and Spera, Mauro},
     title = {Low-Dimensional {Pure} {Braid} {Group} {Representations} {Via} {Nilpotent} {Flat} {Connections}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {643--672},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {1066.20042},
     mrnumber = {3202844},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a8/}
}
TY  - JOUR
AU  - Benvegnù, Alberto
AU  - Spera, Mauro
TI  - Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 643
EP  - 672
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a8/
LA  - en
ID  - BUMI_2013_9_6_3_a8
ER  - 
%0 Journal Article
%A Benvegnù, Alberto
%A Spera, Mauro
%T Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections
%J Bollettino della Unione matematica italiana
%D 2013
%P 643-672
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a8/
%G en
%F BUMI_2013_9_6_3_a8
Benvegnù, Alberto; Spera, Mauro. Low-Dimensional Pure Braid Group Representations Via Nilpotent Flat Connections. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 643-672. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a8/

[1] A. Adem, D. Cohen and F.R. Cohen, On representations and K-theory of the braid groups, Math. Ann., 326 (2003), 515-542. | DOI | MR | Zbl

[2] K. Aomoto, Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Tokio, 25 (1978), 149-156. | MR | Zbl

[3] P.K. Aravind, Borromean entanglement of the GHZ state, in Potentiality, Entanglement and Passion-at-a-Distance eds R.S. Cohen, M. Horne, J. Stachel (Kluwer Academic Publishers, Boston, 1997), pp. 53-59. | DOI | MR | Zbl

[4] V. I. Arnol'D, The cohomology ring of colored braids, Mat. Zametki, 5 No 2 (1969), 227-231. (Russian) English transl. in Trans. Moscow Math. Soc., 21 (1970), 30-52. | MR

[5] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ., 4 (1925), 42-72; Theory of braids, Ann. Math., 48 (1947), 101-126. | DOI | MR

[6] D. Bar-Natan, On the Vassiliev knot invariants, Topology, 34 (1995), 423-472. | DOI | MR | Zbl

[7] A. Benvegnù and M. Spera, On Uncertainty, Braiding and Entanglement in Geometric Quantum Mechanics, Rev. Math. Phys., 18 (2006), 1075-1102. | DOI | MR

[8] M. Berger, Third order link invariants, J. Phys. A: Math. Gen., 23 (1990), 2787- 2793. | MR | Zbl

[9] M. Berger, Third order braid invariants, J. Phys. A: Math. Gen., 24 (1991), 4027- 4036. | MR | Zbl

[10] M. Berger, Hamiltonian dynamics generated by Vassiliev invariants, J. Phys. A: Math. Gen., 34 (2001), 1363-1374. | DOI | MR | Zbl

[11] M. Berger, Topological Invariants in braid theory, Lett. Math. Phys., 55 (2001), 181-192. | DOI | MR | Zbl

[12] S. Bigelow, The Burau representation is not faithful for n = 5, Geometry & Topology, 3 (1999), 397-404. | fulltext EuDML | DOI | MR | Zbl

[13] J.S. Birman and T.E. Brendle, Braids: A Survey, Ch.2 in Handbook of Knot Theory eds. W. Menasco and M. Thistlethwaite (Elsevier B.V. 2005), pp. 19-103. | DOI | MR | Zbl

[14] K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc., 83 (1977), 831-879. | DOI | MR | Zbl

[15] K.-T. Chen, Collected Papers of K.-T. Chen (eds P. Tondeur and R. Hain), Contemporary Mathematicians (Birkäuser, Boston, MA 2001). | MR | Zbl

[16] N.W. Evans and M.A. Berger, A hierarchy of linking integrals, in Topological Aspects of the Dynamics of Fluids and Plasmas, eds. H.K. Moffatt et al. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 237-248. | MR | Zbl

[17] R. Hain, The Geometry of the Mixed Hodge Structure on the Fundamental Group, Proc. Symp. Pure Math., 46 (1987), 247-282. | MR

[18] C. Kassel and V. Turaev, Braid groups (Springer, Berlin, 2008). | DOI | MR | Zbl

[19] L. Kauffman and S. Lomonaco, Quantum entanglement and topological entanglement, New J. Phys., 4 (2002) 73.1-73.18. | DOI | MR

[20] T. Kohno, Série de Poincaré-Koszul associé aux groupes de tresses pures, Inv. Math., 82 (1985), 57-75. | fulltext EuDML | DOI | MR | Zbl

[21] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier, Grenoble, 37 (1987), 139-160. | fulltext EuDML | MR | Zbl

[22] T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations, Cont. Math., 78 (1988), 339-363. | DOI | MR | Zbl

[23] T. Kohno, Conformal Field Theory and Topology (AMS, Providence, RI, 2002). | MR | Zbl

[24] M. Kontsevich, Vassiliev's knot invariants, Adv. Sov. Math. 16, Part 2 (1993), 137-150, (AMS Providence, RI). | MR | Zbl

[25] R. E. Lawrence, Homological representations of the Hecke algebra, Commun. Math. Phys., 135 (1990), 141-191. | MR | Zbl

[26] T.Q.T. Le and J. Murakami, Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions, Topology Appl., 62 (1995), 193- 206. | DOI | MR | Zbl

[27] G.D. Mostow, Braids, hypergeometric functions, and lattices, Bull. Am. Math. Soc., 16 (1987), 225-246. | DOI | MR | Zbl

[28] P. Papi and C. Procesi, Invarianti di nodi, Quaderno U.M.I. 45 (Pitagora, Bologna, 1998) (in Italian).

[29] V. Penna and M. Spera, Higher order linking numbers, curvature and holonomy, J. Knot Theory Ram., 11 (2002), 701-723. | DOI | MR | Zbl

[30] M. Spera, A survey on the differential and symplectic geometry of linking numbers, Milan J. Math., 74 (2006), 139-197. | DOI | MR | Zbl

[31] J.N. Tavares, Chen Integrals, Generalized Loops and Loop Calculus, Int. J. Mod. Phys. A, 9 (1994), 4511-4548. | DOI | MR | Zbl

[32] G. Wechsung, Functional Equations of Hyperlogarithms, in Structural properties of Polylogarithms (ed. L. Lewin), Ch. 8, (AMS Providence, RI, 1991), pp. 171-184. | DOI | MR