Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_3_a18, author = {Segatti, Antonio}, title = {A {Variational} {Approach} to {Gradient} {Flows} in {Metric} {Spaces}}, journal = {Bollettino della Unione matematica italiana}, pages = {765--780}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {3}, year = {2013}, zbl = {0890.49011}, mrnumber = {3202854}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a18/} }
Segatti, Antonio. A Variational Approach to Gradient Flows in Metric Spaces. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 765-780. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a18/
[1] Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. Second edition. | MR
- - ,[2] Calculus and heat flow in Metric-Measure spaces and applications to spaces with Ricci bounds from below, preprint (2011). | DOI | MR
- - ,[3] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser, 1997. | DOI | MR | Zbl
- ,[4] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50), North-Holland Publishing Co., Amsterdam, 1973. | Zbl
,[5] Un principe variationnel associé à certaines équations paraboliques. Le cas indépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282, (1976), Aii, A971-A974. | MR | Zbl
- ,[6] Minimum principles for the trajectories of systems governed by rate problems, J. Mech. Phys. Solids, 56 (2008), 1885-1904. | DOI | MR | Zbl
- ,[7] Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418. | DOI | MR | Zbl
- ,[8] Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), 180-187. | fulltext EuDML | MR | Zbl
- - ,[9] Conjectures concerning some evolution problems, A celebration of John F. Nash, Jr., Duke Math. J., 81 (1996), 255-268. | DOI | MR
,[10] Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., 108, (1994), x+90.
[11] A theory of anti-selfdual Lagrangians: dynamical case, C. R. Math. Acad. Sci. Paris, 340 (2005), 325-330. | DOI | MR | Zbl
,[12] The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. | DOI | MR | Zbl
- - ,[13] Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan, 19 (1967), 493-507. | DOI | MR
,[14] Sur certaines équations paraboliques non linéaires, Bull. Soc. Math. France, 93 (1965), 155-175. | fulltext EuDML | MR | Zbl
,[15] Non-homogeneous boundary value problems and applications. Vol. I, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York, 1972. | MR | Zbl
- ,[16] A class of minimum principles for characterizing the trajectories of dissipative systems, ESAIM Control Optim. Calc. Var., 14 (2008), 494-516. | fulltext EuDML | DOI | MR | Zbl
- ,[17] Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc. Var., 17 (2011), 52-85. | fulltext EuDML | DOI | MR | Zbl
- ,[18] Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), Aiv, A1035-A1038. | MR | Zbl
,[19] A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math., 53 (2000), 525-589. | DOI | MR | Zbl
- - ,[20] The geometry of dissipative evolution: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. | DOI | MR | Zbl
,[21] A variational principle for gradient flows in metric spaces, C. R. Acad. Sci. Paris Sér. I Math., 349 (2011), 1225-1228. | DOI | MR | Zbl
- - - ,[22] Weighted-energy-dissipation functionals for gradient flows in metric spaces, in preparation (2011). | DOI | MR
- - - ,[23] Nonlinear wave equations as limits of convex minimization problems: proof of a conjecture by De Giorgi, Ann. of Math. (2), 175 (2012), 3, 1551-1574. | DOI | MR | Zbl
- ,[24] A variational view at the time-dependent minimal surface equation J. Evol. Equ., 11 (2011), 793-809. | DOI | MR | Zbl
- ,[25] The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J. Control Optim., 47 (2008), 1615-1642. | DOI | MR | Zbl
,[26] The De Giorgi conjecture on elliptic regularization, Math. Models Methods Appl. Sci., 21 (2011), 1377-1394. | DOI | MR | Zbl
,[27] A new approach to evolution, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 233-238. | DOI | MR | Zbl
,