Molteplicity of Solutions for Sturm-Liouville Problems
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 725-734.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The existence of multiple solutions to a Sturm-Liouville boundary value problem is presented. The approach adopted is based on multiple critical points theorems.
@article{BUMI_2013_9_6_3_a14,
     author = {D'Agu{\`\i}, Giuseppina},
     title = {Molteplicity of {Solutions} for {Sturm-Liouville} {Problems}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {725--734},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {1149.49007},
     mrnumber = {3202850},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a14/}
}
TY  - JOUR
AU  - D'Aguì, Giuseppina
TI  - Molteplicity of Solutions for Sturm-Liouville Problems
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 725
EP  - 734
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a14/
LA  - en
ID  - BUMI_2013_9_6_3_a14
ER  - 
%0 Journal Article
%A D'Aguì, Giuseppina
%T Molteplicity of Solutions for Sturm-Liouville Problems
%J Bollettino della Unione matematica italiana
%D 2013
%P 725-734
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a14/
%G en
%F BUMI_2013_9_6_3_a14
D'Aguì, Giuseppina. Molteplicity of Solutions for Sturm-Liouville Problems. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 725-734. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a14/

[1] H. Brézis, Analyse Functionelle - Théorie et Applications, Masson, Paris, 1983.

[2] G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations 244 (2008), 3031-3059. | DOI | MR | Zbl

[3] G. Bonanno and G. D'Aguì, A Neumann boundary value problem for the Sturm-Liouville Equation, Applied Mathematics and Computations, 208, (2009), 318-327. | DOI | MR | Zbl

[4] G. Bonanno and S.A. Marano, On the structure of the critical set of non- differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1-10. | DOI | MR | Zbl

[5] G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009) 1-20. | fulltext EuDML | DOI | MR | Zbl

[6] G. Bonanno, Multiple solutions for a Neumann boundary value problem, J. Nonlinear and Convex Anal. 4 (2003), 287-290. | MR | Zbl

[7] P. Candito, Infinitely many solutions to a Neumann problem for ellictic equations involving the p-Laplacian and with discontinuous nonlinearities, Proc. Edinb. Math. Soc. 45 (2002), 397-409. | DOI | MR | Zbl

[8] G. D'Aguì, Infinitely many solutions for a double Sturm-Liouville problem, Journal of Global Optimization, 54 (2012), 619-625. | DOI | MR | Zbl

[9] G. D'Aguì and A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal., 75 (2012), 5612-5619. | DOI | MR | Zbl

[10] G. Dai, Infinitely many soluions for a Neumann-Type differential inclusion problem involving the p(x)-Laplacian, Nonlinear Anal., 70, Issue 6, (2009), 2297- 2305. | DOI | MR | Zbl

[11] X. Fan and C. Ji, Existence of Infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, J. Math. Anal. Appl. 334 (2007), 248-260. | DOI | MR | Zbl

[12] C. Li, The existence of Infinitely many solutions of a class of nonlinear elliptic equations with a Neumann boundary conditions for both resonance and oscillation problems, Nonlinear Anal. 54 (2003), 431-443. | DOI | MR | Zbl

[13] C. Li and S. Li, Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary conditions, J. Math. Anal. Appl. 298 (2004), 14-32. | DOI | MR | Zbl

[14] S. Marano and D. Motreanu, Infinitely many Critical points of Non-Differentiable Functions and Applications to the Neumann-Type problem involving the p-Laplacian, J. Differential Equations 182 (2002), 108-120. | DOI | MR | Zbl

[15] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 133 (2000), 401-410. | DOI | MR | Zbl

[16] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian, Bull. London Math. Soc. 33 (2001), 331-340. | DOI | MR | Zbl

[17] J.-P. Sun, W.-T. Li and S.S. Cheng, Three positive solutions for second-order Neumann boundary value problems, Appl. Math. Letters 17 (2004), 1079-1084. | DOI | MR | Zbl

[18] J.-P. Sun and W.-T. Li, Multiple positive solutions to second-order Neumann boundary value problems, Appl. Math. Comput. 146 (2003), 187-194. | DOI | MR | Zbl