Space-Time Resonances and the Null Condition for Wave Equations
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 513-529.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this note we describe a recent result obtained by the author and Shatah [26], concerning global existence and scattering for small solutions of nonlinear wave equations. Based on the analysis of space-time resonances, we formulate a very natural non-resonance condition for quadratic nonlinearities that guarantees the existence of global solutions with linear asymptotic behavior. This non-resonance condition turns out to be a generalization of the null condition given by Klainerman in his seminal work [21].
@article{BUMI_2013_9_6_3_a1,
     author = {Pusateri, Fabio},
     title = {Space-Time {Resonances} and the {Null} {Condition} for {Wave} {Equations}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {513--529},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {3},
     year = {2013},
     zbl = {1122.35068},
     mrnumber = {3202837},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a1/}
}
TY  - JOUR
AU  - Pusateri, Fabio
TI  - Space-Time Resonances and the Null Condition for Wave Equations
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 513
EP  - 529
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a1/
LA  - en
ID  - BUMI_2013_9_6_3_a1
ER  - 
%0 Journal Article
%A Pusateri, Fabio
%T Space-Time Resonances and the Null Condition for Wave Equations
%J Bollettino della Unione matematica italiana
%D 2013
%P 513-529
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a1/
%G en
%F BUMI_2013_9_6_3_a1
Pusateri, Fabio. Space-Time Resonances and the Null Condition for Wave Equations. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 513-529. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a1/

[1] S. Alinhac, Semilinear hyperbolic systems with blowup at infinity. Indiana Univ. Math. J., 55 (3) (2006),1209-1232. | DOI | MR | Zbl

[2] Y. Choquet-Bruhat - D. Christodoulou, Existence of global solutions of the classical equations of gauge theories, C. R. Acad. Sci. Paris Sér. I Math., 293, no. 3 (1981), 195-199. | MR | Zbl

[3] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math., 39 (2) (1986), 267-282. | DOI | MR | Zbl

[4] R. Coifman - Y. Meyer, Au delà des opérateurs pseudo-différentiels. Astérisque, 57 (1978). | MR | Zbl

[5] P. Germain, Global existence for coupled Klein-Gordon equations with different speeds. ArXiv:1005.5238v1, 2010. | DOI | MR | Zbl

[6] P. Germain - N. Masmoudi, Global existence for the Euler-Maxwell system, ArXiv:1107.1595v1, 2011. | DOI | MR

[7] P. Germain - N. Masmoudi - J. Shatah, Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. IMRN, (3) (2009), 414-432. | DOI | MR | Zbl

[8] P. Germain - N. Masmoudi - J. Shatah, Global solutions for the gravity surface water waves equation in dimension 3. Ann. of Math., 175, no. 2 (2012), 691-754. | DOI | MR | Zbl

[9] P. Germain - N. Masmoudi - J. Shatah, Global solutions for a class of 2d quadratic Schrödinger equations. J. Math. Pures Appl., 97, no. 5 (2012), 505-543. | DOI | MR | Zbl

[10] P. Germain - N. Masmoudi - J. Shatah, Global existence for capillary waves. To appear in Comm. Pure Appl. Math., 2012. | DOI | MR | Zbl

[11] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math., 28 (1-3) (1979), 235-268. | fulltext EuDML | DOI | MR | Zbl

[12] F. John, Blow-up for quasilinear wave equations in three space dimensions. Comm. on Pure Appl. Math., 34 (1) (1981), 29-51. | DOI | MR | Zbl

[13] F. John - S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math., 37 (4) (1984), 443-455. | DOI | MR | Zbl

[14] S. Katayama, Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions. arXiv:1101.3657, J. Hyperbolic Differ. Equ. 9 (2) (2012), 263-323. | DOI | MR | Zbl

[15] S. Katayama - K. Yokoyama, Global small amplitude solutions to systems of non-linear wave equations with multiple speeds. Osaka J. Math., 43, no. 2 (2006), 283-326. | MR | Zbl

[16] J. Kato - F. Pusateri, A new proof of long range scattering for critical nonlinear Schrödinger equations. Diff. Int. Equations, 24 (9-10) (2011), 923-940. | MR

[17] M. Keel - H. Smith - C. Sogge, Almost global existence for some semilinear wave equations. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math., 87 (2002), 265-279. | DOI | MR

[18] M. Keel - H. Smith - C. Sogge, Almost global existence for quasilinear wave equations in three space dimensions. J. Amer. Math. Soc., 17 (1) (2004), 109-153. | DOI | MR | Zbl

[19] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math., 38 (3) (1985), 321-332. | DOI | MR | Zbl

[20] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Comm. Pure Appl. Math., 38 (5) (1985), 631-641. | DOI | MR | Zbl

[21] S. Klainerman, The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984). Lectures in Appl. Math., 23 (1986), 293-326. | MR

[22] S. Klainerman - T. Sideris, On almost global existence for nonrelativistic wave equations in 3D. Comm. Pure Appl. Math., 49 (3) (1996), 307-321. | DOI | MR | Zbl

[23] H. Lindblad, Global solutions of nonlinear wave equations. Comm. Pure Appl. Math. 45 (9) (1992), 1063-1096,. | DOI | MR | Zbl

[24] H. Lindblad - I. Rodnianski, The weak null condition for Einstein's equations. C. R. Acad. Sci. Paris. Ser. I, 336 (11) (2003), 901-906. | DOI | MR | Zbl

[25] H. Lindblad - I. Rodnianski, Global existence for the Einstein vacuum equations in wave coordinates. Comm. Math. Phys., 256(1) (2005), 43-110. | DOI | MR | Zbl

[26] F. Pusateri - J. Shatah, Space-time resonances and the null condition for (first order) systems of wave equations. arXiv:1109.5662 (2011), Comm. Pure and Appl. Math., 66 (2) (2013), 1495-1540. | DOI | MR | Zbl

[27] T. Sideris, The null condition and global existence of nonlinear elastic waves. Invent. Math. 123, no. 2 (1996), 323-342. | fulltext EuDML | DOI | MR | Zbl

[28] T. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves. Ann. of Math. (2), 151, no. 2 (2000), 849-874. | fulltext EuDML | DOI | MR | Zbl

[29] T. Sideris - S. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds. SIAM J. Math. Anal. 33, no. 2 (2001), 477-488. | DOI | MR | Zbl

[30] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math., 38 (5) (1985), 685-696. | DOI | MR | Zbl

[31] J. Shatah - M. Struwe, Geometric wave equations, volume 2 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York, 1998. | MR | Zbl

[32] J. Simon, A wave operator for a nonlinear Klein-Gordon equation. Lett. Math. Phys. 7, no. 5 (1983), 387-398. | DOI | MR