Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_3_a1, author = {Pusateri, Fabio}, title = {Space-Time {Resonances} and the {Null} {Condition} for {Wave} {Equations}}, journal = {Bollettino della Unione matematica italiana}, pages = {513--529}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {3}, year = {2013}, zbl = {1122.35068}, mrnumber = {3202837}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a1/} }
Pusateri, Fabio. Space-Time Resonances and the Null Condition for Wave Equations. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 3, pp. 513-529. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_3_a1/
[1] Semilinear hyperbolic systems with blowup at infinity. Indiana Univ. Math. J., 55 (3) (2006),1209-1232. | DOI | MR | Zbl
,[2] Existence of global solutions of the classical equations of gauge theories, C. R. Acad. Sci. Paris Sér. I Math., 293, no. 3 (1981), 195-199. | MR | Zbl
- ,[3] Global solutions of nonlinear hyperbolic equations for small initial data. Comm. Pure Appl. Math., 39 (2) (1986), 267-282. | DOI | MR | Zbl
,[4] Au delà des opérateurs pseudo-différentiels. Astérisque, 57 (1978). | MR | Zbl
- ,[5] Global existence for coupled Klein-Gordon equations with different speeds. ArXiv:1005.5238v1, 2010. | DOI | MR | Zbl
,[6] Global existence for the Euler-Maxwell system, ArXiv:1107.1595v1, 2011. | DOI | MR
- ,[7] Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. IMRN, (3) (2009), 414-432. | DOI | MR | Zbl
- - ,[8] Global solutions for the gravity surface water waves equation in dimension 3. Ann. of Math., 175, no. 2 (2012), 691-754. | DOI | MR | Zbl
- - ,[9] Global solutions for a class of 2d quadratic Schrödinger equations. J. Math. Pures Appl., 97, no. 5 (2012), 505-543. | DOI | MR | Zbl
- - ,[10] Global existence for capillary waves. To appear in Comm. Pure Appl. Math., 2012. | DOI | MR | Zbl
- - ,[11] Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math., 28 (1-3) (1979), 235-268. | fulltext EuDML | DOI | MR | Zbl
,[12] Blow-up for quasilinear wave equations in three space dimensions. Comm. on Pure Appl. Math., 34 (1) (1981), 29-51. | DOI | MR | Zbl
,[13] Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math., 37 (4) (1984), 443-455. | DOI | MR | Zbl
- ,[14] Asymptotic pointwise behavior for systems of semilinear wave equations in three space dimensions. arXiv:1101.3657, J. Hyperbolic Differ. Equ. 9 (2) (2012), 263-323. | DOI | MR | Zbl
,[15] Global small amplitude solutions to systems of non-linear wave equations with multiple speeds. Osaka J. Math., 43, no. 2 (2006), 283-326. | MR | Zbl
- ,[16] A new proof of long range scattering for critical nonlinear Schrödinger equations. Diff. Int. Equations, 24 (9-10) (2011), 923-940. | MR
- ,[17] Almost global existence for some semilinear wave equations. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math., 87 (2002), 265-279. | DOI | MR
- - ,[18] Almost global existence for quasilinear wave equations in three space dimensions. J. Amer. Math. Soc., 17 (1) (2004), 109-153. | DOI | MR | Zbl
- - ,[19] Uniform decay estimates and the Lorentz invariance of the classical wave equation. Comm. Pure Appl. Math., 38 (3) (1985), 321-332. | DOI | MR | Zbl
,[20] Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions. Comm. Pure Appl. Math., 38 (5) (1985), 631-641. | DOI | MR | Zbl
,[21] The null condition and global existence to nonlinear wave equations. Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984). Lectures in Appl. Math., 23 (1986), 293-326. | MR
,[22] On almost global existence for nonrelativistic wave equations in 3D. Comm. Pure Appl. Math., 49 (3) (1996), 307-321. | DOI | MR | Zbl
- ,[23] Global solutions of nonlinear wave equations. Comm. Pure Appl. Math. 45 (9) (1992), 1063-1096,. | DOI | MR | Zbl
,[24] The weak null condition for Einstein's equations. C. R. Acad. Sci. Paris. Ser. I, 336 (11) (2003), 901-906. | DOI | MR | Zbl
- ,[25] Global existence for the Einstein vacuum equations in wave coordinates. Comm. Math. Phys., 256(1) (2005), 43-110. | DOI | MR | Zbl
- ,[26] Space-time resonances and the null condition for (first order) systems of wave equations. arXiv:1109.5662 (2011), Comm. Pure and Appl. Math., 66 (2) (2013), 1495-1540. | DOI | MR | Zbl
- ,[27] The null condition and global existence of nonlinear elastic waves. Invent. Math. 123, no. 2 (1996), 323-342. | fulltext EuDML | DOI | MR | Zbl
,[28] Nonresonance and global existence of prestressed nonlinear elastic waves. Ann. of Math. (2), 151, no. 2 (2000), 849-874. | fulltext EuDML | DOI | MR | Zbl
,[29] Global existence for systems of nonlinear wave equations in 3D with multiple speeds. SIAM J. Math. Anal. 33, no. 2 (2001), 477-488. | DOI | MR | Zbl
- ,[30] Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math., 38 (5) (1985), 685-696. | DOI | MR | Zbl
,[31] Geometric wave equations, volume 2 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York, 1998. | MR | Zbl
- ,[32] A wave operator for a nonlinear Klein-Gordon equation. Lett. Math. Phys. 7, no. 5 (1983), 387-398. | DOI | MR
,