Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_2_a8, author = {Sorrentino, Alfonso}, title = {A {Variational} {Approach} to the {Study} of the {Existence} of {Invariant} {Lagrangian} {Graphs}}, journal = {Bollettino della Unione matematica italiana}, pages = {405--440}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {2}, year = {2013}, zbl = {1305.37032}, mrnumber = {3112987}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a8/} }
TY - JOUR AU - Sorrentino, Alfonso TI - A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs JO - Bollettino della Unione matematica italiana PY - 2013 SP - 405 EP - 440 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a8/ LA - en ID - BUMI_2013_9_6_2_a8 ER -
Sorrentino, Alfonso. A Variational Approach to the Study of the Existence of Invariant Lagrangian Graphs. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 405-440. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a8/
[1] Criteria for virtual fibering. J. Topol., 2 (1) (2008), 269-284. | DOI | MR | Zbl
,[2] Fibrés de Green et régularité des graphes $C^0$-Lagrangiens invariants par un flot de Tonelli. Ann. Henri Poincaré, 9 (5) (2008), 881-926. | DOI | MR | Zbl
,[3] The tiered Aubry set for autonomous Lagrangian functions. Ann. Inst. Fourier (Grenoble), 58 (5) (2008), 1733-1759. | fulltext EuDML | MR | Zbl
,[4] Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18 (5) (1963), 13-40. | MR
,[5] Mathematical methods of classical mechanics Graduate Texts in Mathematics, 60 (Springer-Verlag, New York, 1989). | DOI | MR
,[6] The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D, 8 (3) (1983), 381-422. | DOI | MR | Zbl
- ,[7] Stable norms of non-orientable surfaces. Ann. Inst. Fourier (Grenoble) 58, no. 4 (2008), 1337-1369. | fulltext EuDML | MR | Zbl
- ,[8] Mather sets for twist maps and geodesics on tori. Dyn. Rep. 1 (1988), 1-56. | MR | Zbl
,[9] Symplectic aspects of Mather theory. Duke Math. J., 136 (3) (2007), 401-420. | MR
,[10] Zur invarianz des n-dimensionalen Gebiets. Math. Ann., 72 (1) (1912), 55-56. | fulltext EuDML | DOI | MR | Zbl
,[11] Riemannian tori without conjugate points are flat. Geom. Funct. Anal, 4, no. 3 (1994), 259-269. | fulltext EuDML | DOI | MR | Zbl
- ,[12] Collective geodesic flows. Ann. Inst. Fourier (Grenoble), 53 (1) (2003), 265-308. | fulltext EuDML | MR | Zbl
- ,[13] A weak Liouville-Arnol'd Theorem. Talk at University of Pittsburgh, January 2011.
,[14] Weak Liouville-Arnol'd Theorems and their implications. Comm. Math. Phys., 315 (1) (2012), 109-133. | DOI | MR | Zbl
- ,[15] Variationsrechnung und partielle Differentialgleichung erster Ordnung. Leipzig-Berlin: B. G. Teubner, 1935. | MR
,[16] On minimizing measures of the action of autonomous Lagrangians. Nonlinearity, 8 (6) (1995), 1077-1085. | MR | Zbl
,[17] Global minimizers of autonomous Lagrangians. Preprint, 1999. | MR | Zbl
- ,[18] The virtual Haken conjecture: experiments and examples. Geom. Topol., 7 (2003), 399-441. | fulltext EuDML | DOI | MR | Zbl
- ,[19] The Weak KAM theorem in Lagrangian dynamics. Cambridge University Press (to appear). | Zbl
,[20] Uniqueness of Invariant Lagrangian graphs in a homology or a cohomology class. Ann. Sc. Norm. Super. Pisa Cl. Sci., Vol VIII (4) (2009), 659-680. | MR | Zbl
- - ,[21] Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. of Math. (2), 33 (4) (1932), 719-739. | DOI | MR | Zbl
,[22] Homology of coverings. Pacific J. Math., 112 (1) (1984), 83-113. | MR
,[23] On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 572-530. | MR
,[24] Invariance of global solutions of Hamilton-Jacobi equation. Bull. Soc. Math. France, 130 (4) (2002), 493-506. | fulltext EuDML | DOI | MR | Zbl
,[25] On the minimizing measures of Lagrangian dynamical systems. Nonlinearity, 5 (3) (1992), 623-638. | MR | Zbl
,[26] Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.), 28 (2) (1997), 141-153. | DOI | MR | Zbl
,[27] Aubry sets vs Mather sets in two degrees of freedom. Calculus of Variations and PDE, no. 3-4 (2011), 429-460. | DOI | MR | Zbl
,[28] Differentiability of Mather's average action and integrability on closed surfaces. Nonlinearity, 24 (2011), 1777-1793. | DOI | MR | Zbl
- ,[29] Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology, 21 (4) (1982), 457-467. | DOI | MR | Zbl
,[30] A criterion for the nonexistence of invariant circles. Inst. Hautes Études Sci. Publ. Math., 63 (1986), 153-204. | fulltext EuDML | MR | Zbl
,[31] Action minimizing orbits in Hamiltonian systems. Transition to chaos in classical and quantum mechanics. Lectures given at the 3rd session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, July 6-13, 1991. Berlin: Springer-Verlag. Lect. Notes Math. 1589, 92-186, 1994. | DOI | MR | Zbl
- ,[32] Variational construction of orbits of twist diffeomorphisms. J. Amer. Math. Soc., 4 (2) (1991), 207-263. | DOI | MR | Zbl
,[33] Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207 (2) (1991), 169-207. | fulltext EuDML | DOI | MR | Zbl
,[34] Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 43 (5) (1993), 1349-1386. | fulltext EuDML | MR | Zbl
,[35] Order structure on action minimizing orbits. Symplectic topology and measure preserving dynamical systems. Papers of the AMS-IMS-SIAM joint summer research conference, Snowbird, UT, USA, July 1-5, 2007. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 512, 41-125, 2010.
,[36] Convergent series expansions for quasi-periodic motions. Math. Ann., 169 (1967), 136-176. | fulltext EuDML | DOI | MR | Zbl
,[37] Convex analysis. Princeton Mathematical Series, No. 28, Princeton University Press (1970), xviii+451. | MR
,[38] Asymptotic cycles. Ann. of Math. (2), 66 (1957), 270-284. | DOI | MR
,[39] On the integrability of Tonelli Hamiltonians. Trans. Amer. Math. Soc., 363 (10) (2011), 5071-5089. | DOI | MR
,[40] Lecture Notes on Mather's theory for Lagrangian systems. Preprint, 2011. | MR | Zbl
,