Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_2_a6, author = {Tortora, Antonio}, title = {The {Power} {Mapping} as {Endomorphism} of a {Group}}, journal = {Bollettino della Unione matematica italiana}, pages = {379--387}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {2}, year = {2013}, zbl = {1294.20047}, mrnumber = {3112985}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/} }
Tortora, Antonio. The Power Mapping as Endomorphism of a Group. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 379-387. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/
[1] A classification of n-abelian groups, Canad. J. Math. 21 (1969), 1238-1244. | DOI | MR | Zbl
,[2] Factorization of n-soluble and n-nilpotent groups, Proc. Amer. Math. Soc. 4 (1953), 15-26. | DOI | MR | Zbl
,[3] Infinite soluble groups with the Bell property: a finiteness condition, Monatsh. Math. 104 (1987), 191-197. | fulltext EuDML | DOI | MR | Zbl
,[4] On n-Bell groups, Comm. Algebra, 17 (1989), 787-807. | DOI | MR | Zbl
- ,[5] The structure of Bell groups, J. Group Theory, 9 (2006), 117-125. | DOI | MR | Zbl
- - ,[6] Locally graded Bell groups, Publ. Math. Debrecen, 71 (2007), 1-9. | MR | Zbl
- - ,[7] On n-abelian groups and their generalizations, Groups St Andrews 2009 in Bath, Volume I, London Math. Soc. Lecture Note Ser. 387 (Cambridge University Press, Cambridge, 2011), 244-255. | MR | Zbl
- ,[8] Some special classes of n-abelian groups, International J. Group Theory, 1 no. 2 (2012), 19-24. | MR | Zbl
- ,[9] On n-Levi groups, Arch. Math. 47 (1986), 198-210. | DOI | MR | Zbl
,[10] Groups with 3-abelian normal closure, Arch. Math. 51 (1988), 104-110. | DOI | MR | Zbl
- ,[11] Levi-properties in metabelian groups, Contemp. Math. 109 (1990), 59-72. | DOI | MR | Zbl
- ,[12] Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187-197. | MR
,[13] Notes on Group Theory I, II, J. Indian Math. Soc. 8 (1944), 1-9. | MR
,[14] Notes on group theory VII, J. Indian Math. Soc. 9 (1945), 37-42. | MR | Zbl
,[15] Power mappings and group morphisms, Proc. Roy. Irish. Acad. Sect. A 74 (1974), 91-93. | MR | Zbl
,[16] The mapping which takes each element of a group onto its nth power, Amer. Math. Monthly, 65 (1958), 33-34. | DOI | MR | Zbl
- ,[17] Some properties of Bell groups, Comm. Algebra, 37 (2009), 431-438. | DOI | MR | Zbl
,[18] Groups in which raising to a power is an automorphism, Canad. Math. Bull. 8 (1965), 825-827. | DOI | MR | Zbl
,