The Power Mapping as Endomorphism of a Group
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 379-387

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $n \neq 0$, $1$ be an integer. A group $G$ is said to be $n$-abelian if the mapping $f_{n} \colon x \to x^{n}$ is an endomorphism of $G$. Then $(xy)^{n} = x^{n}y^{n}$ for all $x$, $y \in G$, from which it follows $[x^{n}, y] = [x, y]^{n} = [x; y^{n}]$. In this paper we investigate groups $G$ such that $f_{n}$ is a monomorphism or an epimorphism of $G$. We also deal with the connections between $n$-abelian groups and groups satisfying the identity $[x^{n}, y] = [x, y]^{n} = [x; y^{n}]$. Finally, we provide an arithmetic description of the set of all integers $n$ such that $f_{n}$ is an automorphism of a given group $G$.
@article{BUMI_2013_9_6_2_a6,
     author = {Tortora, Antonio},
     title = {The {Power} {Mapping} as {Endomorphism} of a {Group}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {379--387},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {2},
     year = {2013},
     zbl = {1294.20047},
     mrnumber = {3112985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/}
}
TY  - JOUR
AU  - Tortora, Antonio
TI  - The Power Mapping as Endomorphism of a Group
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 379
EP  - 387
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/
LA  - en
ID  - BUMI_2013_9_6_2_a6
ER  - 
%0 Journal Article
%A Tortora, Antonio
%T The Power Mapping as Endomorphism of a Group
%J Bollettino della Unione matematica italiana
%D 2013
%P 379-387
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/
%G en
%F BUMI_2013_9_6_2_a6
Tortora, Antonio. The Power Mapping as Endomorphism of a Group. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 379-387. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/