The Power Mapping as Endomorphism of a Group
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 379-387
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let $n \neq 0$, $1$ be an integer. A group $G$ is said to be $n$-abelian if the mapping $f_{n} \colon x \to x^{n}$ is an endomorphism of $G$. Then $(xy)^{n} = x^{n}y^{n}$ for all $x$, $y \in G$, from which it follows $[x^{n}, y] = [x, y]^{n} = [x; y^{n}]$. In this paper we investigate groups $G$ such that $f_{n}$ is a monomorphism or an epimorphism of $G$. We also deal with the connections between $n$-abelian groups and groups satisfying the identity $[x^{n}, y] = [x, y]^{n} = [x; y^{n}]$. Finally, we provide an arithmetic description of the set of all integers $n$ such that $f_{n}$ is an automorphism of a given group $G$.
@article{BUMI_2013_9_6_2_a6,
author = {Tortora, Antonio},
title = {The {Power} {Mapping} as {Endomorphism} of a {Group}},
journal = {Bollettino della Unione matematica italiana},
pages = {379--387},
publisher = {mathdoc},
volume = {Ser. 9, 6},
number = {2},
year = {2013},
zbl = {1294.20047},
mrnumber = {3112985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/}
}
Tortora, Antonio. The Power Mapping as Endomorphism of a Group. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 379-387. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a6/