Factorization in the Self-Idealization of a PID
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 363-377

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let $D$ be a principal ideal domain and $R(D) = \{(\begin{smallmatrix} a b \\ 0 a \end{smallmatrix}) \mid a, b \in D\}$ be its self-idealization. It is known that $R(D)$ is a commutative noetherian ring with identity, and hence $R(D)$ is atomic (i.e., every nonzero nonunit can be written as a finite product of irreducible elements). In this paper, we completely characterize the irreducible elements of $R(D)$. We then use this result to show how to factorize each nonzero nonunit of $R(D)$ into irreducible elements. We show that every irreducible element of $R(D)$ is a primary element, and we determine the system of sets of lengths of $R(D)$.
@article{BUMI_2013_9_6_2_a5,
     author = {Chang, Gyu Whan and Smertnig, Daniel},
     title = {Factorization in the {Self-Idealization} of a {PID}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {363--377},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {2},
     year = {2013},
     zbl = {1283.13015},
     mrnumber = {3112984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a5/}
}
TY  - JOUR
AU  - Chang, Gyu Whan
AU  - Smertnig, Daniel
TI  - Factorization in the Self-Idealization of a PID
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 363
EP  - 377
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a5/
LA  - en
ID  - BUMI_2013_9_6_2_a5
ER  - 
%0 Journal Article
%A Chang, Gyu Whan
%A Smertnig, Daniel
%T Factorization in the Self-Idealization of a PID
%J Bollettino della Unione matematica italiana
%D 2013
%P 363-377
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a5/
%G en
%F BUMI_2013_9_6_2_a5
Chang, Gyu Whan; Smertnig, Daniel. Factorization in the Self-Idealization of a PID. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 363-377. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a5/