Factorization in the Self-Idealization of a PID
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 363-377
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
Let $D$ be a principal ideal domain and $R(D) = \{(\begin{smallmatrix} a b \\ 0 a \end{smallmatrix}) \mid a, b \in D\}$ be its self-idealization. It is known that $R(D)$ is a commutative noetherian ring with identity, and hence $R(D)$ is atomic (i.e., every nonzero nonunit can be written as a finite product of irreducible elements). In this paper, we completely characterize the irreducible elements of $R(D)$. We then use this result to show how to factorize each nonzero nonunit of $R(D)$ into irreducible elements. We show that every irreducible element of $R(D)$ is a primary element, and we determine the system of sets of lengths of $R(D)$.
@article{BUMI_2013_9_6_2_a5,
author = {Chang, Gyu Whan and Smertnig, Daniel},
title = {Factorization in the {Self-Idealization} of a {PID}},
journal = {Bollettino della Unione matematica italiana},
pages = {363--377},
year = {2013},
volume = {Ser. 9, 6},
number = {2},
zbl = {1283.13015},
mrnumber = {3112984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a5/}
}
Chang, Gyu Whan; Smertnig, Daniel. Factorization in the Self-Idealization of a PID. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 363-377. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a5/