Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_2_a1, author = {Mingione, Giuseppe}, title = {La teoria di {Calder\'on-Zygmund} dal caso lineare a quello non lineare}, journal = {Bollettino della Unione matematica italiana}, pages = {269--297}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {2}, year = {2013}, zbl = {1286.35002}, mrnumber = {3112980}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a1/} }
TY - JOUR AU - Mingione, Giuseppe TI - La teoria di Calderón-Zygmund dal caso lineare a quello non lineare JO - Bollettino della Unione matematica italiana PY - 2013 SP - 269 EP - 297 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a1/ LA - it ID - BUMI_2013_9_6_2_a1 ER -
Mingione, Giuseppe. La teoria di Calderón-Zygmund dal caso lineare a quello non lineare. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 269-297. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a1/
[1] Gradient estimates for the $p(x)$-Laplacean system. J. Reine Ang. Math. (Crelles J.), 584 (2005), 117-148. | DOI | MR
- ,[2] Gradient estimates for a class of parabolic systems. Duke Math. J. 136 (2007), 285-320. | DOI | MR | Zbl
- ,[3] A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. | MR | Zbl
,[4] Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften 314. Springer-Verlag, Berlin, 1996. | DOI | MR
- ,[5] Thinnes and Wiener criteria for nonlinear potentials. Indiana Univ. Math. J. 22 (1972/73), 169-197. | DOI | MR | Zbl
- ,[6] Sobolev Spaces. Second edition. Pure and Appl. Math. 140, Elsevier/Academic Press, Amsterdam, 2003. | MR
- ,[7] Calderón-Zygmund estimates for parabolic measure data problems. J. Diff. Equ. 252 (2012), 412-447. | DOI | MR | Zbl
- ,[8] New gradient estimates for parabolic equations. Houston J. Math., in stampa. | MR | Zbl
- ,[9] An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 22 (1995), 241-273. | fulltext EuDML | MR | Zbl
- - - - - ,[10] Problemi differenziali ellittici e parabolici con dati misure. Boll. UMI A (VII), 11 (1997), 439-461.
,[11] Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989), 149-169. | DOI | MR
- ,[12] Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations, 17 (1992), 641-655. | DOI | MR | Zbl
- ,[13] Degenerate problems with irregular obstacles. J. Reine Angew. Math. (Crelles J.), 650 (2011), 107-160. | DOI | MR
- - ,[14] On the equation $\operatorname{div} Y = f$ application to control of phases. J. Amer. Math. Soc. 16 (2003), 393-426. | DOI | MR | Zbl
- ,[15] Gradient estimates for elliptic systems in non-smooth domains. Math. Ann. 341 (2008), 629-650. | DOI | MR | Zbl
- ,[16] Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal. 250 (2007), 167-196. | DOI | MR | Zbl
- - ,[17] Elliptic second order equations. Rend. Sem. Mat. Fis. Milano, 58 (1988), 253-284. | DOI | MR | Zbl
,[18] Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (II), 130 (1989), 189-213. | DOI | MR | Zbl
,[19] On $W^{1,p}$ estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51 (1998), 1-21. | DOI | MR
- ,[20] On the existence of certain singular integrals. Acta Math. 88 (1952), 85-139. | DOI | MR
- ,[21] On singular integrals. Amer. J. Math. 78 (1956), 289-309. | DOI | MR
- ,[22] Sulle maggiorazioni in $L^p$ nella teoria delle equazioni ellittiche. Boll. UMI (III), 20 (1965), 393-399. | fulltext bdim | fulltext EuDML | MR | Zbl
- ,[23] Nonlinear potentials, local solutions to elliptic equations and rearrangements. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), 10 (2011), 335-361. | MR | Zbl
,[24] Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 28 (1999), 741-808. | fulltext EuDML | MR | Zbl
- - - ,[25] Degenerate parabolic equations. Universitext. Springer-Verlag, New York, 1993. | DOI | MR | Zbl
,[26] On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Amer. J. Math. 115 (1993), 1107-1134. | DOI | MR | Zbl
- ,[27] Anisotropic elliptic problems with natural growth terms. Manuscripta Math. 135 (2011), 521-543. | DOI | MR | Zbl
,[28] Measure data problems, lower order terms and interpolation effects. Ann. Mat. Pura Appl. (IV) DOI: 10.1007/s10231-012-0277-7. | DOI | MR | Zbl
- ,[29] Nonlinear parabolic problems with lower order terms and related integral estimates. Nonlinear Anal. 75 (2012), 4177-4197. | DOI | MR | Zbl
- ,[30] Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. math., in stampa. | DOI | MR | Zbl
- - ,[31] Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side. J. Reine Angew. Math. (Crelles J.), 520 (2000), 1-35. | DOI | MR
- - ,[32] Gradient estimates via non-linear potentials. Amer. J. Math. 133 (2011), 1093-1149. | DOI | MR | Zbl
- ,[33] Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 259 (2010), 2961-2998. | DOI | MR | Zbl
- ,[34] Parabolic systems with polynomial growth and regularity. Mem. Amer. Math. Soc. 214, no. 1005 (2011), 128. | DOI | MR
- - ,[35] $W^{2,n}$ a priori estimates for solutions to fully nonlinear equations. Indiana Univ. Math. J. 42 (1993), 413-423. | DOI | MR | Zbl
,[36] Non-linear elliptic systems involving measure data. Rend. Mat. Appl. (7), 15 (1995), 311-319. | MR | Zbl
- ,[37] Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983. | MR | Zbl
,[38] Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge, NJ, 2003. | DOI | MR | Zbl
,[39] Inverting the p-harmonic operator. Manuscripta Math. 92 (1997), 249-258. | fulltext EuDML | DOI | MR | Zbl
- - ,[40] A nonlinear potential theory. Russ. Math. Surveys, 27 (1972), 71-148. | MR
- ,[41] Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble), 33 (1983), 161-187. | fulltext EuDML | MR | Zbl
- ,[42] Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators. Studia Math. 75 (1983), 293-312. | fulltext EuDML | DOI | MR | Zbl
,[43] p-harmonic tensors and quasiregular mappings. Ann. Math. (II), 136 (1992), 589-624. | DOI | MR | Zbl
,[44] Nonlinear Cauchy-Riemann operators in $\mathbb{R}^n$. Trans. Amer. Math. Soc. 354 (2002), 1961-1995. | DOI | MR | Zbl
,[45] On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119 (1992), 129-143. | DOI | MR | Zbl
- ,[46] Weak minima of variational integrals. J. Reine Angew. Math. (Crelle J.), 454 (1994), 143-161. | fulltext EuDML | DOI | MR | Zbl
- ,[47] Riesz transforms and elliptic PDEs with VMO coefficients. J. Anal. Math. 74 (1998), 183-212. | DOI | MR | Zbl
- ,[48] On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426. | DOI | MR | Zbl
- ,[49] Singular solutions to the p-Laplace equation. Math. Ann. 275 (1986), 599-615. | fulltext EuDML | DOI | MR
- ,[50] Superharmonic functions are locally renormalized solutions. Ann. Inst. H. Poincarè, Anal. Non Lin., 28 (2011), 775-795. | DOI | MR | Zbl
- - ,[51] Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 19 (1992), 591-613. | fulltext EuDML | MR
- ,[52] The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137-161. | DOI | MR
- ,[53] Very weak solutions of parabolic systems of p-Laplacian type. Ark. Mat. 40 (2002), 105-132. | DOI | MR | Zbl
- ,[54] A local estimate for nonlinear equations with discontinuous coefficients. Comm. Partial Differential Equations, 24 (1999), 2043-2068. | DOI | MR | Zbl
- ,[55] A note on the Wolff potential estimate for solutions to elliptic equations involving measures. Adv. Calc. Var. 3 (2010), 99-113. | DOI | MR | Zbl
- ,[56] The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006), 331-398. | DOI | MR | Zbl
- ,[57] Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 198 (2010), 369-455. | DOI | MR | Zbl
- ,[58] Universal potential estimates. J. Funct. Anal. 262 (2012), 4205-4269. | DOI | MR | Zbl
- ,[59] Endpoint and intermediate potential estimates for nonlinear equations. Boll. UMI (IX), 4 (2011), 149-157. | fulltext bdim | fulltext EuDML | MR | Zbl
- ,[60] Nonlinear potential estimates in parabolic problems. Rendiconti Lincei, Matematica e Applicazioni, 22 (2011), 161-174. | DOI | MR | Zbl
- ,[61] The Wolff gradient bound for degenerate parabolic equations. J. Europ. Math. Soc., in stampa. | fulltext EuDML | DOI | MR | Zbl
- ,[62] Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), in stampa. | MR | Zbl
- ,[63] Linear potentials in nonlinear potential theory. Arch. Rat. Mech. Anal. 207 (2013), 215-246. | DOI | MR | Zbl
- ,[64] A surprising linear type estimate for nonlinear elliptic equations. C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 889-892. | DOI | MR | Zbl
- ,[65] Linear and quasilinear elliptic equations. Academic Press, New York-London 1968. | MR
- ,[66] Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France, 93 (1965), 97-107. | fulltext EuDML | MR | Zbl
- ,[67] On very weak solutions of certain elliptic systems. Comm. Partial Differential Equations, 18 (1993), 1515-1537. | DOI | MR | Zbl
,[68] On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. (Crelles J.), 365 (1986), 67-79. | fulltext EuDML | DOI | MR | Zbl
,[69] The continuity at a boundary point of the solutions of quasi-linear elliptic equations. (Russian), Vestnik Leningrad. Univ. 25 (1970), 42-55. | MR
,[70] The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), 6 (2007), 195-261. | fulltext EuDML | MR | Zbl
,[71] Gradient estimates below the duality exponent. Math. Ann. 346 (2010), 571-627. | DOI | MR | Zbl
,[72] Gradient potential estimates. J. Europ. Math. Soc. 13 (2011), 459-486. | fulltext EuDML | DOI | MR | Zbl
,[73] Regularity of minima: an invitation to the Dark Side of the Calculus of Variations. Applications of Mathematics, 51 (2006), 355-425. | fulltext EuDML | DOI | MR | Zbl
,[74] Nonlinear measure data problems. Milan J. Math. 79 (2011), 429-496. | DOI | MR | Zbl
,[75] Quasilinear and Hessian equations of Lane-Emden type. Ann. of Math. (II), 168 (2008), 859-914. | DOI | MR | Zbl
- ,[76] Singular quasilinear and Hessian equations and inequalities. J. Funct. Anal. 256 (2009), 1875-1906. | DOI | MR | Zbl
- ,[77] The role of conservation laws in the analysis of conformally invariant problems. In Topics in modern regularity theory (G. Mingione ed.). Sc. Normale Superiore 2012. | DOI | MR
,[78] Non-linear Calderón-Zygmund theory for parabolic systems with subquadratic growth. J. Evol. Equ. 10 (2010), 597-622. | DOI | MR | Zbl
,[79] Pathological solutions of elliptic differential equations. Ann. Sc. Norm. Sup. Pisa (III), 18 (1964), 385-387. | fulltext EuDML | MR | Zbl
,[80] Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247-302. | DOI | MR | Zbl
,[81] The spaces $\mathcal{L}^{(p,\lambda)}$, $N^{(p,\lambda)}$ and interpolation. Ann. Sc. Norm. Sup. Pisa (III), 19 (1965), 443-462. | fulltext EuDML | MR | Zbl
,[82] $\mathcal{L}^{(p,\lambda)}$-spaces and interpolation. Comm. Pure Appl. Math. 17 (1964), 293-306. | DOI | MR | Zbl
,[83] Introduction to Fourier analysis on Euclidean spaces. Princeton Math. Ser., 32. Princeton Univ. Press, Princeton, N.J. 1971. | MR | Zbl
- ,[84] Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA, 99/24 (2002), 15269-15276. | DOI | MR | Zbl
- ,[85] Elliptic equations and rearrangements. Ann Sc. Norm. Sup. Pisa Cl. Sci. (IV), 3 (1976), 697-717. | fulltext EuDML | MR | Zbl
,[86] On the weak continuity of elliptic operators and applications to potential theory. Amer. J. Math. 124 (2002), 369-410. | MR | Zbl
- ,[87] Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977), 219-240. | DOI | MR | Zbl
,[88] A new approach to Lp estimates for Calderón-Zygmund type singular integrals. Arch. Math. (Basel), 92 (2009), 137-146. | DOI | MR
,