Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_2_a0, author = {Flandoli, Franco}, title = {Interazione tra noise e singolarit\`a nelle equazioni alle derivate parziali}, journal = {Bollettino della Unione matematica italiana}, pages = {253--267}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {2}, year = {2013}, zbl = {1286.60064}, mrnumber = {3112979}, language = {it}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a0/} }
TY - JOUR AU - Flandoli, Franco TI - Interazione tra noise e singolarità nelle equazioni alle derivate parziali JO - Bollettino della Unione matematica italiana PY - 2013 SP - 253 EP - 267 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a0/ LA - it ID - BUMI_2013_9_6_2_a0 ER -
Flandoli, Franco. Interazione tra noise e singolarità nelle equazioni alle derivate parziali. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 2, pp. 253-267. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_2_a0/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004), 227-260. | DOI | MR | Zbl
,[2] Stochastic flows of diffeomorphisms for one-dimensional SDE with discontinuous drift, Electron. Commun. Probab. 15 (2010), 213-226. | DOI | MR | Zbl
,[3] Zero-noise solutions of linear transport equations without uniqueness: an example, C. R. Math. Acad. Sci. Paris, 347, no. 13-14 (2009), 753-756. | DOI | MR | Zbl
- ,[4] Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplicative noise, Comm. P.D.E. 36, n. 8 (2011), 1455-1474. | DOI | MR | Zbl
- ,[5] Small random perturbations of Peano phenomena, Stochastics, 6, no. 3-4 (1981/82), 279-292. | DOI | MR | Zbl
- ,[6] Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, Cambridge 1992. | DOI | MR | Zbl
- ,[7] Noise prevents collapse of Vlasov Poisson point charges, to appear on Comm. Pure Appl. Math. | DOI | MR | Zbl
- - ,[8] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547. | fulltext EuDML | DOI | MR | Zbl
- ,[9] Hölder flow and differentiability for SDEs with nonregular drift, to appear on Stoch. Anal. Appl. | DOI | MR | Zbl
- ,[10] Noise Prevents Singularities in Linear Transport Equations, to appear on J. Funct. Anal. | DOI | MR | Zbl
- ,[11] Well posedness of the transport equation by stochastic perturbation, Invent. Math. 180 (2010), 1-53. | DOI | MR | Zbl
- - ,[12] Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations, Stoch. Proc. Appl. 121, no. 7 (2011), 1445-1463. | DOI | MR | Zbl
- - ,[13] Random Perturbation of PDEs and Fluid Dynamic Models, LNM 2015, Springer 2011. | DOI | MR | Zbl
,[14] The interaction between noise and transport mechanisms in PDEs, Milan J. Math. 79, no. 2 (2011), 543-560. | DOI | MR | Zbl
,[15] Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, 131 (2005), 154-196. | DOI | MR
- ,[16] Stochastic differential equations and stochastic flows of diffeomorphisms, École d'été de probabilités de Saint-Flour, XL-2010, Lecture Notes in Math. 2015, Springer, Berlin, 2011. | DOI | MR
,[17] Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 331, no. 10 (2000), 783-790. | DOI | MR | Zbl
- ,[18] Large deviations principles for stochastic scalar conservation laws, Probab. Theory Related Fields, 147, no. 3-4 (2010), 607-648. | DOI | MR | Zbl
,[19] Wiener chaos and uniqueness for stochastic transport equation, C. R. Math. Acad. Sci. Paris, 349, no. 11-12 (2011), 669-672. | DOI | MR | Zbl
,[20] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002. | MR
- ,[21] Ricci flow and geometrization of 3-manifolds, University Lecture Series, 53, American Mathematical Society, Providence, RI, 2010. | DOI | MR | Zbl
- ,[22] A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007. | MR
- ,[23] Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1994. | MR | Zbl
- ,