A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols
Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 205-218.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Consider a one dimensional Schrödinger operator $\tilde{A} = -\ddot{u} + V \cdot u$ with a periodic potential $V(\cdot)$, defined on a suitable subspace of $L^{2}(\mathbb{R})$. Its spectrum is the union of closed intervals, and in general these intervals are separated by open intervals (spectral gaps). The Borg theorem states that we have no gaps if and only if the periodic potential $V(\cdot)$ is constant almost everywhere. In this paper we consider families of Finite Difference approximations of the operator $\tilde{A}$, which depend upon two parameters $n$, i.e., the number of periodicity intervals possibly infinite, and $p$, i.e., the precision of the approximation in each interval. We show that the approach, with fixed $p$, leads to families of sequences $\{A_{n}(p)\}$, where every matrix $A_{n}(p)$ can be interpreted as a block Toeplitz matrix generated by a $p \times p$ matrix-valued symbol $f$. In other words, every $A_{n}(p)$ with finite $n$ is a finite section of the double infinite Toeplitz-Laurent operator $A_{\infty}(p) = L(f)$. The specific feature of the symbol $f$ , which is a trigonometric polynomial of 1st degree, allows to identify the distribution of the collective spectra of the matrix-sequence $\{A_{n}(p)\}$, and, in particular, provide a simple way for proving a discrete version of Borg's theorem: the discrete operator $L(f)$ has no gaps if and only if the corresponding ``potential'' is constant. The result partly overlaps with known results by Flaschka from the operator theory. The main novelty here is the purely linear algebra approach.
@article{BUMI_2013_9_6_1_a8,
     author = {Golinskii, L. and Kumar, K. and Namboodiri, M. N. N. and Serra-Capizzano, S.},
     title = {A {Note} on a {Discrete} {Version} of {Borg's} {Theorem} via {Toeplitz-Laurent} {Operators} with {Matrix-Valued} {Symbols}},
     journal = {Bollettino della Unione matematica italiana},
     pages = {205--218},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {2013},
     zbl = {1277.47041},
     mrnumber = {3076848},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/}
}
TY  - JOUR
AU  - Golinskii, L.
AU  - Kumar, K.
AU  - Namboodiri, M. N. N.
AU  - Serra-Capizzano, S.
TI  - A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols
JO  - Bollettino della Unione matematica italiana
PY  - 2013
SP  - 205
EP  - 218
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/
LA  - en
ID  - BUMI_2013_9_6_1_a8
ER  - 
%0 Journal Article
%A Golinskii, L.
%A Kumar, K.
%A Namboodiri, M. N. N.
%A Serra-Capizzano, S.
%T A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols
%J Bollettino della Unione matematica italiana
%D 2013
%P 205-218
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/
%G en
%F BUMI_2013_9_6_1_a8
Golinskii, L.; Kumar, K.; Namboodiri, M. N. N.; Serra-Capizzano, S. A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 205-218. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/

[1] W. Arveson, $C^*$-Algebras and Numerical Linear Algebra. J. Funct. Anal. 122 (1994), 333-360. | DOI | MR | Zbl

[2] R. Bhatia, Matrix Analysis. (Graduate text in Mathematics) Springer Verlag, New York (1997). | DOI | MR

[3] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78 (1946), 1-96. | DOI | MR | Zbl

[4] A. Böttcher - B. Silbermann, Analysis of Toeplitz Operators. Springer Verlag, Berlin (1990). | DOI | MR

[5] A. Böttcher - B. Silbermann, Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York (1999). | DOI | MR

[6] A. Bultheel - M. Van Barel, Linear algebra, rational approximation and orthogonal polynomials. (Studies in Computational Mathematics, 6) North-Holland Publishing Co., Amsterdam (1997). | MR | Zbl

[7] R. Carmona - J. Lacroix, Spectral Theory of random Schrodinger operators, Birkhauser, Boston (1990). | DOI | MR | Zbl

[8] S. Clark - F. Gesztesy - W. Render, Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators. J. Differ. Eq. 219 (2005), 144-182. | DOI | MR | Zbl

[9] E. B. Davies, Spectral Enclosures and complex resonances for Self adjoint Operators. LMS J. Comput. Math. 1 (1998), 42-74. | DOI | MR | Zbl

[10] E.B. Davies - M. Plum, Spectral Pollution. IMA J. Numer. l Anal. 24 (2004), 417-438. | DOI | MR | Zbl

[11] B. Despres, The Borg theorem for the vectorial Hill's equation. Inverse Problems 11 (1995), 97-121. | MR | Zbl

[12] H. Flaschka, Discrete and periodic illustrations of some aspects of the inverse method. Lecture Notes in Physics, 38 (1975), 441-466. | MR | Zbl

[13] U. Grenander - G. Szegö, Toeplitz Forms and Their Applications. Chelsea, New York, second edition (1984). | MR

[14] M. Reed - B. Simon, Methods of Modern Mathematical Physics, Analysis of operators IV. Academic Press, New York (1978). | MR | Zbl

[15] S. Serra-Capizzano, Distribution results on the algebra generated by Toeplitz sequences: a finite dimensional approach. Linear Algebra Appl. 328 (2001), 121-130. | DOI | MR | Zbl

[16] P. Tilli, A Note on the Spectral Distribution of Toeplitz Matrices. Linear Multilin. Algebra, 45 (1998), 147-159. | DOI | MR | Zbl