Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_1_a8, author = {Golinskii, L. and Kumar, K. and Namboodiri, M. N. N. and Serra-Capizzano, S.}, title = {A {Note} on a {Discrete} {Version} of {Borg's} {Theorem} via {Toeplitz-Laurent} {Operators} with {Matrix-Valued} {Symbols}}, journal = {Bollettino della Unione matematica italiana}, pages = {205--218}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {2013}, zbl = {1277.47041}, mrnumber = {3076848}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/} }
TY - JOUR AU - Golinskii, L. AU - Kumar, K. AU - Namboodiri, M. N. N. AU - Serra-Capizzano, S. TI - A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols JO - Bollettino della Unione matematica italiana PY - 2013 SP - 205 EP - 218 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/ LA - en ID - BUMI_2013_9_6_1_a8 ER -
%0 Journal Article %A Golinskii, L. %A Kumar, K. %A Namboodiri, M. N. N. %A Serra-Capizzano, S. %T A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols %J Bollettino della Unione matematica italiana %D 2013 %P 205-218 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/ %G en %F BUMI_2013_9_6_1_a8
Golinskii, L.; Kumar, K.; Namboodiri, M. N. N.; Serra-Capizzano, S. A Note on a Discrete Version of Borg's Theorem via Toeplitz-Laurent Operators with Matrix-Valued Symbols. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 205-218. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a8/
[1] $C^*$-Algebras and Numerical Linear Algebra. J. Funct. Anal. 122 (1994), 333-360. | DOI | MR | Zbl
,[2] Matrix Analysis. (Graduate text in Mathematics) Springer Verlag, New York (1997). | DOI | MR
,[3] Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Bestimmung der Differentialgleichung durch die Eigenwerte. Acta Math. 78 (1946), 1-96. | DOI | MR | Zbl
,[4] Analysis of Toeplitz Operators. Springer Verlag, Berlin (1990). | DOI | MR
- ,[5] Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York (1999). | DOI | MR
- ,[6] Linear algebra, rational approximation and orthogonal polynomials. (Studies in Computational Mathematics, 6) North-Holland Publishing Co., Amsterdam (1997). | MR | Zbl
- ,[7] Spectral Theory of random Schrodinger operators, Birkhauser, Boston (1990). | DOI | MR | Zbl
- ,[8] Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators. J. Differ. Eq. 219 (2005), 144-182. | DOI | MR | Zbl
- - ,[9] Spectral Enclosures and complex resonances for Self adjoint Operators. LMS J. Comput. Math. 1 (1998), 42-74. | DOI | MR | Zbl
,[10] Spectral Pollution. IMA J. Numer. l Anal. 24 (2004), 417-438. | DOI | MR | Zbl
- ,[11] The Borg theorem for the vectorial Hill's equation. Inverse Problems 11 (1995), 97-121. | MR | Zbl
,[12] Discrete and periodic illustrations of some aspects of the inverse method. Lecture Notes in Physics, 38 (1975), 441-466. | MR | Zbl
,[13] Toeplitz Forms and Their Applications. Chelsea, New York, second edition (1984). | MR
- ,[14] Methods of Modern Mathematical Physics, Analysis of operators IV. Academic Press, New York (1978). | MR | Zbl
- ,[15] Distribution results on the algebra generated by Toeplitz sequences: a finite dimensional approach. Linear Algebra Appl. 328 (2001), 121-130. | DOI | MR | Zbl
,[16] A Note on the Spectral Distribution of Toeplitz Matrices. Linear Multilin. Algebra, 45 (1998), 147-159. | DOI | MR | Zbl
,