Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{BUMI_2013_9_6_1_a2, author = {Mosco, Umberto}, title = {Analysis and {Numerics} of {Some} {Fractal} {Boundary} {Value} {Problems}}, journal = {Bollettino della Unione matematica italiana}, pages = {53--73}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {2013}, zbl = {1280.35035}, mrnumber = {3077113}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a2/} }
Mosco, Umberto. Analysis and Numerics of Some Fractal Boundary Value Problems. Bollettino della Unione matematica italiana, Série 9, Tome 6 (2013) no. 1, pp. 53-73. http://geodesic.mathdoc.fr/item/BUMI_2013_9_6_1_a2/
[1] A multiscale numerical method for Poisson problems in some ramified domains with fractal boundary, Multiscale Model. Simul. 5 (3) (2006), 828-860. | DOI | MR | Zbl
- - ,[2] Variational Convergence for Functions and Operators, Pitman Advanced Publishing Program, London 1984. | MR | Zbl
,[3] P.BAGNERINI - Finite elements for a prefractal transmission problem, C.R.A.S. Math, 342 (3) (2006), 211-214. | DOI | MR | Zbl
- ,[4] Transition density estimates for Brownian motion on scale irregular Sierpiński gaskets, Ann. Inst. Henri Poincaré, 33 (5) (1997), 531-557. | fulltext EuDML | DOI | MR | Zbl
- ,[5] On a diffusion in a fractured medium, SIAM J. Appl. Math., 3 (1971), 434-448. | Zbl
- ,[6] Insulating layers and Robin problems on Koch mixtures, J. Diff. Eqn., 251 (4-5) (2011), 1332-1353. | DOI | MR | Zbl
- ,[7] On the Laplacean transfer across a fractal mixture, Asymptotic Analysis, to appear. DOI 10.3233/ASY-2012-1149. | MR
- ,[8] Numerical approximation of transmission problems across Koch-type highly conductive layers, Appl. Math. Comp., 218 (2012), 5453-5473. | DOI | MR | Zbl
- - ,[9] Heat flow problems across fractal mixtures: regularity results of the solutions and numerical approximation, Differential and Integral Equations, in print. | MR | Zbl
- - ,[10] Extension Operators and Finite Elements for Fractal Boundary value Problems, PhD thesis, Worcester Polytecnic Institute, USA, 2011.
,[11] Elliptic problems in nonsmooth domains, Advanced Publishing Program, London 1985. | MR | Zbl
,[12] Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747. | DOI | MR | Zbl
,[13] Dirichlet forms and Brownian motion penetrating fractals, Potential Analysis, 13 (2000), 69-80. | DOI | MR | Zbl
,[14] Function Spaces on Subsets of $\mathbb{R}^n$, Part 1 (Math. Reports) Vol. 2. London: Harwood Acad. Publ. 1984. | MR | Zbl
- ,[15] Convergence of spectral structures: a functional analytic theory and its applications to spectral geometry, Comm. in Anal. and Geom., 11 (4) (2003), 599-673. | DOI | MR | Zbl
- ,[16] A transmission problem with a fractal interface, AZ. Anal. und Ihre Anwend., 21 (2002), 113-133. | DOI | MR | Zbl
,[17] Numerical approximation of heat flow problems across highly conductive layers, ``Quaderni di Matematica'', Dept. Me. Mo. Mat., U. Roma La Sapienza, 2007. | MR
- ,[18] Asymptotic convergence for energy forms, Adv. Math. Sc. Appl., 13 (2003), 315-341. | MR | Zbl
- ,[19] Convergence results for parabolic transmission problems across highly conductive layers with small capacity, AMSA, 16 (2006), 411-445. | MR | Zbl
- ,[20] Irregular heat flow problems, SIAM J. Math. Anal., 42 (4), (2010), 1539-1567. | DOI | MR | Zbl
- ,[21] Semilinear evolution transmission problems across fractal layers, Nonlinear Anal. Th. and Appl., 75 (2012), 4222-4240. | DOI | MR | Zbl
- ,[22] Semilinear fractal problems: approximation and regularity results, Nonlinear Anal. Th. and Appl., to appear. DOI: 10.1016/j.na.2012.08.020. | DOI | MR
- ,[23] On the construction of certain fractal mixtures, MS Thesis, WPI, 2009.
,[24] Composite media and asymptotic Dirichlet forms, J. Funct. Anal., 123, 2 (1994), 368-421. | DOI | MR | Zbl
,[25] Variational fractals, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) Vol. XXV (1997), 683-712. | fulltext EuDML | MR
,[26] Harnack inequalities on scale irregular Sierpiński gaskets, Nonlinear Problems in Math. Physics and Related Topics II, Edited by Birman et al., Kluwer Acad./Plenum Publ. (New York, 2002), 305-328. | DOI | MR | Zbl
,[27] U.MOSCO - An example of fractal singular homogenization, Georgian Math. J. 14 (1) (2007), 169-194. | MR | Zbl
,[28] Fractal Reinforcement of Elastic Membranes, Arch. Rational Mech. Anal., 194 (2009), 49-74. | DOI | MR | Zbl
- ,[29] Vanishing viscosity for fractal sets, Discrete and Continuous Dynamical Systems. 28 (3) (2011), 1207-1235. | DOI | MR | Zbl
- ,[30] Thin fractal fibers, Math. Methods in the Applied Sciences, to appear. DOI: 10.1002/mma.1621. | MR
- ,[31] Phénomènes des transmission à travers des couches minces de conductivité élevée, J. Math Anal. Appl., 47 (1974), 284-309. | DOI | MR | Zbl
- ,[32] Galerkin Approximation for Highly Conductive Layers, PhD Thesis, Dept. Me. Mo. Mat., U. Roma La Sapienza, 2005.
,[33] Numerical solution of a transmission problem with pre fractal interface, PhD Thesis, WPI, 2007.
,